The structural properties and thermal conductivity of graphene-based SiC heterostructures are investigated using the reverse nonequilibrium molecular dynamics. The C/SiC/C heterostructure has the greatest value of cohesive energy due to the effect of vdW interactions between layers. The surfaces of heterostructures begin to ripple as a direct consequence of the plane fluctuations observed around T = 400 K. The thermal conductivity at room temperature is determined. The length and the armchair and zigzag orientations increase the magnitude of κ which decreases with increasing temperature. This change is attributed to the phonon Umklapp scattering and phonon cross-plane couplings. The impact of point vacancy, bi-vacancy and edge vacancy in a concentration range up to 2% is also discussed. The localization of low-frequency phonons around the vacancy induces a decaying characteristic of thermal conductivity. The effect depends on the type of vacancy and is more pronounced in heterostructures with point vacancy. The present results make pristine and defective heterostructures promising materials for various thermoelectric applications with tunable functionalities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00894-021-04985-w | DOI Listing |
Heliyon
January 2025
Swiss Federal Laboratories for Materials Science and Technology (Empa), Laboratory for High Performance Ceramics, 8600, Dübendorf, CH, Switzerland.
Since the 1950s, the woodcutting industry has relied heavily on tungsten carbide (WC) cutting tools to overcome the challenges posed by the complex structure of wood, including hard knots and abrasive elements such as sand and tannic acids. These demands require cutting tools with superior thermal conductivity and mechanical properties. However, the rising cost of WC materials has prompted the search for alternative solutions.
View Article and Find Full Text PDFLangmuir
January 2025
Guangdong Provincial Key Laboratory of Thermal Management Engineering & Materials, National-Local Joint Engineering Laboratory of Functional Carbon Materials, Shenzhen 518055, China.
Alumina/polymer composites are conventional thermal interface materials widely used for heat dissipation. However, the interfacial thermal resistance (ITR) dominates the thermal conductivity (TC) of these composites, presenting a critical challenge. This study introduces erythritol as an innovative thermal bridge to effectively reduce the ITR by selectively locating it at the interfaces among alumina (AlO) particles.
View Article and Find Full Text PDFWaste Manag
January 2025
Department of Materials Science and Engineering, University of Seoul, Seoul 02504, South Korea. Electronic address:
This study investigates zone melting (ZM) as an innovative method for recycling 7000 series aluminum alloy scraps, a byproduct of computer numerical control (CNC) machining in smartphone production. Traditional fluxing methods are ineffective at removing Zn, a key alloying element. Vacuum atmospheric ZM utilizes the evaporation of Zn and Mg impurities and solidification segregation to concentrate elemental impurities within the melt, facilitating their efficient removal.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
Maintaining human body temperature in both high and low-temperature environments is fundamental to human survival, necessitating high-performance thermal insulation materials to prevent heat exchange with the external environment. Currently, most fibrous thermal insulation materials are characterized by large weight, suboptimal thermal insulation, and inferior mechanical and waterproof performance, thereby limiting their effectiveness in providing thermal protection for the human body. In this study, lightweight, waterproof, mechanically robust, and thermal insulating polyamide-imide (PAI) grooved micro/nanofibrous aerogels were efficiently and directly assembled by electrospinning.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Xi'an Jiaotong University, School of Microelectronics & State Key Laboratory for Mechanical Behavior of Materials, Xi'an 710049, China.
The bismuth monolayer has recently been experimentally identified as a novel platform for the investigation of two-dimensional single-element ferroelectric system. Here, we model the potential energy surface of a bismuth monolayer by employing a message-passing neural network and achieve an error smaller than 1.2 meV per atom.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!