Purpose Of Review: The application of artificial intelligence (AI) in medicine and ophthalmology has experienced exponential breakthroughs in recent years in diagnosis, prognosis, and aiding clinical decision-making. The use of digital data has also heralded the need for privacy-preserving technology to protect patient confidentiality and to guard against threats such as adversarial attacks. Hence, this review aims to outline novel AI-based systems for ophthalmology use, privacy-preserving measures, potential challenges, and future directions of each.
Recent Findings: Several key AI algorithms used to improve disease detection and outcomes include: Data-driven, imagedriven, natural language processing (NLP)-driven, genomics-driven, and multimodality algorithms. However, deep learning systems are susceptible to adversarial attacks, and use of data for training models is associated with privacy concerns. Several data protection methods address these concerns in the form of blockchain technology, federated learning, and generative adversarial networks.
Summary: AI-applications have vast potential to meet many eyecare needs, consequently reducing burden on scarce healthcare resources. A pertinent challenge would be to maintain data privacy and confidentiality while supporting AI endeavors, where data protection methods would need to rapidly evolve with AI technology needs. Ultimately, for AI to succeed in medicine and ophthalmology, a balance would need to be found between innovation and privacy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/ICU.0000000000000846 | DOI Listing |
Sci Rep
January 2025
Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada.
The integration of radar technology into smart furniture represents a practical approach to health monitoring, circumventing the concerns regarding user convenience and privacy often encountered by conventional smart home systems. Radar technology's inherent non-contact methodology, privacy-preserving features, adaptability to diverse environmental conditions, and high precision characteristics collectively establish it a compelling alternative for comprehensive health monitoring within domestic environments. In this paper, we introduce a millimeter (mm)-wave radar system positioned strategically behind a seat, featuring an algorithm capable of identifying unique cardiac waveform patterns for healthy subjects.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Computer Science and Engineering at Hanyang University ERICA, Ansan-si, Gyeonggi-do, South Korea.
Privacy-preserving record linkage (PPRL) technology, crucial for linking records across datasets while maintaining privacy, is susceptible to graph-based re-identification attacks. These attacks compromise privacy and pose significant risks, such as identity theft and financial fraud. This study proposes a zero-relationship encoding scheme that minimizes the linkage between source and encoded records to enhance PPRL systems' resistance to re-identification attacks.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Massachusetts Institute of Technology, Cambridge, MA, USA
Background: Speech is a predominant mode of human communication. Speech digital recordings are inexpensive to record and contain rich health related information. Deep learning, a key method, excels in detecting intricate patterns, however, it requires substantial training data.
View Article and Find Full Text PDFMed Image Anal
December 2024
Stomatology Hospital Affliated to Zhejiang University of Medicine, Zhejiang University, Hangzhou, 310016, China; ZJU-Angelalign R&D Center for Intelligence Healthcare, ZJU-UIUC Institute, Zhejiang University, Haining, 314400, China; Zhejiang Key Laboratory of Medical Imaging Artificial Intelligence, Zhejiang University, Hangzhou, 310058, China. Electronic address:
Automatic 3-dimensional tooth segmentation on intraoral scans (IOS) plays a pivotal role in computer-aided orthodontic treatments. In practice, deploying existing well-trained models to different medical centers suffers from two main problems: (1) the data distribution shifts between existing and new centers, which causes significant performance degradation. (2) The data in the existing center(s) is usually not permitted to be shared, and annotating additional data in the new center(s) is time-consuming and expensive, thus making re-training or fine-tuning unfeasible.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Computer Science and Engineering, Southwest Minzu University, Chengdu 610041, China.
Cloud-edge-end computing architecture is crucial for large-scale edge data processing and analysis. However, the diversity of terminal nodes and task complexity in this architecture often result in non-independent and identically distributed (non-IID) data, making it challenging to balance data heterogeneity and privacy protection. To address this, we propose a privacy-preserving federated learning method based on cloud-edge-end collaboration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!