Phantom tooth pain (PTP) is a rare and specific neuropathic pain that occurs after pulpectomy and tooth extraction, but its cause is not understood. We hypothesized that there is a genetic contribution to PTP. We focused on solute carrier family 17 member 9 (SLC17A9)/vesicular nucleotide transporter (VNUT) and purinergic receptor P2Y12 (P2RY12), both of which have been associated with neuropathic pain and pain transduction signaling in the trigeminal ganglion in rodents. We sought to corroborate these associations in humans. We investigated gene polymorphisms that contribute to PTP. We statistically examined the association between genetic polymorphisms and PTP vulnerability in 150 patients with orofacial pain, including PTP, and 500 healthy subjects. We found that the rs735055 polymorphism of the gene and rs3732759 polymorphism of the gene were associated with the development of PTP. Carriers of the minor allele of rs735055 and individuals who were homozygous for the major allele of rs3732759 had a higher rate of PTP. Carriers of the minor allele of rs735055 reportedly had high mRNA expression in the spinal cord, which may increase the storage and release of adenosine triphosphate. Individuals who were homozygous for the major allele of rs3732759 may have higher P2RY12 expression that is more active in microglia. Therefore, these carriers may be more susceptible to PTP. These results suggest that specific genetic polymorphisms of the and genes are involved in PTP. This is the first report on genes that are associated with PTP in humans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9003655 | PMC |
http://dx.doi.org/10.1177/17448069221089592 | DOI Listing |
Molecules
December 2024
School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, Yuquan Road, Beijing 100049, China.
The src-homology 2 domain-containing phosphatase 2 (SHP2) is a human cytoplasmic protein tyrosine phosphatase that plays a crucial role in cellular signal transduction. Aberrant activation and mutations of SHP2 are associated with tumor growth and immune suppression, thus making it a potential target for cancer therapy. Initially, researchers sought to develop inhibitors targeting SHP2's catalytic site (protein tyrosine phosphatase domain, PTP).
View Article and Find Full Text PDFVet Med Sci
January 2025
Department of Genetics, Faculty of Veterinary Medicine, Yozgat Bozok University, Yozgat, Türkiye.
Background: Determining the complete genome sequence data of adenoviruses has recently become greatly important due to their use by scientists as vectors in cancer studies and other fields, including vaccine development. However, the GenBank database currently has few complete genome sequences of adenoviruses, which are known for their large genomes. To address this gap, we analysed next-generation sequencing data obtained from our previous study to provide the complete genome sequence of the canine adenovirus-2 strain.
View Article and Find Full Text PDFHeliyon
January 2025
North China Electric Power University, Department of Power Engineering, China.
In the context of global efforts toward energy transition and carbon neutrality, thermal integrated pumped thermal energy storage (TIPTES) systems, especially those utilizing low-grade heat sources, have garnered significant attention due to their large capacity, flexibility, and environmental advantages. This paper explores a TIPTES system that harnesses industrial waste heat as a heat source. The system's heat pump (HP) subcycle and Organic Rankine Cycle (ORC) subcycle are equipped with regenerators to optimize system configuration and enhance efficiency.
View Article and Find Full Text PDFAppl Biochem Biotechnol
January 2025
Tissue Culture and Drug Discovery Laboratory, Department of Biotechnology, Anna University, Chennai, 600 025, India.
Programmed cell death (apoptosis) is essential part of the process of tissue regeneration that also plays role in the mechanism of pathology. The phenomenon of fast and transient permeability of mitochondrial membranes by various triggers, known as permeability transition pore (mPTP) leads to the release of proapoptotic proteins and acts as an initial step in initiation of apoptosis. However, a role for mPTP was also suggested for physiology and it is unclear if there is a threshold in number of mitochondria with mPTP which induces cell death and how this mechanism is regulated in different tissues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!