Using high-level many-body theory, we theoretically propose that the Dy and the Ni atoms in the [DyNi(L)(NO)(DMF)] real molecular magnet as well as in its core, that is, the [DyNiO] system, act as two-level qubit systems. Despite their spatial proximity we can individually control each qubit in this highly correlated real magnetic system through specially designed laser-pulse combinations. This allows us to prepare any desired two-qubit state and to build several classical and quantum logic gates, such as the two-qubit (binary) CNOT gate with three distinct laser pulses. Other quantum logic gates include the single-qubit (unary) quantum X, Y, and Z Pauli gates; the Hadamard gate (which necessitates the coherent quantum superposition of two many-body electronic states); and the SWAP gate (which plays an important role in Shor's algorithm for integer factorization). Finally, by sequentially using the achieved CNOT and Hadamard gates we are able to obtain the maximally entangled Bell states, for example, ()(|00⟩ + |11⟩).

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.2c00172DOI Listing

Publication Analysis

Top Keywords

pauli gates
8
bell states
8
molecular magnet
8
quantum logic
8
logic gates
8
gates
5
laser-controlled implementation
4
implementation controlled-not
4
controlled-not hadamard
4
hadamard swap
4

Similar Publications

We recorded transmembrane currents through single nicotinic acetylcholine receptors (nAChRs) in cell-attached patches at high temporal resolutions from cultured and transiently transfected HEK 293 cells. Receptor activation was elicited by acetylcholine (ACh) or epibatidine (Ebd) at concentrations ranging from 0.01 to 100 µM, binding to one (R or R) or both extracellular ligand binding sites (R).

View Article and Find Full Text PDF

Van Hove singularity (vHs), the singularity point of density of states (DOS) in crystalline solids, is a research hotspot in emerging phenomena such as light-matter interaction, superconducting, and quantum anomalous Hall effect. Although the significance of vHs in photothermoelectric (PTE) effect has been recognized, its integral role in electron excitation and thermoelectric effect is still unclear, particularly in the mid-infrared band that suffers from Pauli blockade in semimetals. Here, we unveil the Fermi-level-modulated PTE behavior in the vicinity of vHs in carbon nanotubes, employing ionic-liquid gating.

View Article and Find Full Text PDF

Hardware-tailored diagonalization circuits.

npj Quantum Inf

November 2024

IBM Quantum, IBM Research Europe-Zurich, Rüschlikon, Switzerland.

A central building block of many quantum algorithms is the diagonalization of Pauli operators. Although it is always possible to construct a quantum circuit that simultaneously diagonalizes a given set of commuting Pauli operators, only resource-efficient circuits can be executed reliably on near-term quantum computers. Generic diagonalization circuits, in contrast, often lead to an unaffordable SWAP gate overhead on quantum devices with limited hardware connectivity.

View Article and Find Full Text PDF

Optimal Twirling Depth for Classical Shadows in the Presence of Noise.

Phys Rev Lett

September 2024

Physics Department, McGill University, Montréal, Québec H3A 2T8, Canada.

The classical shadows protocol is an efficient strategy for estimating properties of an unknown state ρ using a small number of state copies and measurements. In its original form, it involves twirling the state with unitaries from some ensemble and measuring the twirled state in a fixed basis. It was recently shown that for computing local properties, optimal sample complexity (copies of the state required) is remarkably achieved for unitaries drawn from shallow depth circuits composed of local entangling gates, as opposed to purely local (zero depth) or global twirling (infinite depth) ensembles.

View Article and Find Full Text PDF

A central challenge in the verification of quantum computers is benchmarking their performance as a whole and demonstrating their computational capabilities. In this Letter, we find a universal model of quantum computation, Bell sampling, that can be used for both of those tasks and thus provides an ideal stepping stone toward fault tolerance. In Bell sampling, we measure two copies of a state prepared by a quantum circuit in the transversal Bell basis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!