The behavior of the tetracoordinate boron of -methyliminodiacetic acid (MIDA) boronates as a nucleophile and an electrophile during the 1,2-boryl migration promoted by a Lewis acid and the 1,4-boryl migration promoted by a neighboring atom, respectively, have been investigated using density functional theory and the quantum theory of atoms in molecules. We found that when boron acts as a nucleophile, the electron density of the B-N interaction of the BMIDA moiety maintains the charge concentration over the boron atom, facilitating its transport toward the electron-deficient center. In this process, the BMIDA remains as a tetracoordinate. On the other hand, the B-N weakening generates a charge depletion region over the boron, allowing it to interact with the electron-rich center of O, developing the boron atom, a pentacoordinate form. Then, the B-N bond breaking triggers a series of changes in the electronic structure of the boron atom. Our results explain the role of the MIDA ligand upon the remarkable susceptibility of the boron atom for switching its structural and electronic characteristics in the migration processes. In addition, the dichotomous behavior was evaluated with a different scenario, considering tricoordinate pinacol boronate as a boryl migrating group.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.joc.1c03119 | DOI Listing |
J Phys Chem C Nanomater Interfaces
January 2025
Institute de Quimica Computacional i Catálisi, Universitat de Girona, Girona 17003 Spain.
Creating sustainable and stable semiconductors for energy conversion via catalysis, such as water splitting and carbon dioxide reduction, is a major challenge in modern materials chemistry, propelled by the limited and dwindling reserves of platinum group metals. Two-dimensional hexagonal borocarbonitride (h-BCN) is a metal-free alternative and ternary semiconductor, possessing tunable electronic properties between that of hexagonal boron nitride (h-BN) and graphene, and has attracted significant attention as a nonmetallic catalyst for a host of technologically relevant chemical reactions. Herein, we use density functional theory to investigate the stability and optoelectronic properties of phase-separated monolayer h-BCN structures, varying carbon concentration and domain size.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Lethbridge, Chemistry and Biochemistry, CANADA.
Base-stabilized rhodium borylene complex κ2-L(CO)Rh(BMes), 2; κ2-L = κ2-NN'-Rh,κ1-N-B-(2,5-[iPr2P=N(4-iPrC6H4)]2-N'(C4H2)-); Mes = mesityl, reacts with a series of alkynes (PhC≡C-R; R = Ph, Me, CO2Et, H) to yield unique structures whereby the alkyne has regioselectively added across boron and the carbon atom of a CO ligand. The resulting complexes, LRh[C(O)C(Ph)C(R)B(Mes)], 3R, react with additional CO to afford cycle-containing products, L(CO)Rh([[EQUATION]]), 5R, that ultimately release highly functionalized organic heterocycles of the form [[EQUATION]]=NPipp (Pipp = 4-iPrC6H4), 6. These oxaboroles, which were assembled from a primary hydroborane, CO, an alkyne, and an azide-generated NPipp, are structurally analogous to two of the five boron-containing therapeutics approved by the FDA.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, 02115, USA.
Discovering electrocatalysts that can efficiently convert carbon dioxide (CO) to valuable fuels and feedstocks using excess renewable electricity is an emergent carbon-neutral technology. A single metal atom embedded in doped graphene, , single-atom catalyst (SAC), possesses high activity and selectivity for electrochemical CO reduction (COR) to CO, yet further reduction to hydrocarbons is challenging. Here, using density functional theory calculations, we investigate stability and reactivity of a broad SAC chemical space with various metal centers (3d transition metals) and dopants (2p dopants of B, N, O; 3p dopants of P, S) as electrocatalysts for COR to methane and methanol.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Department of Chemistry, Birla Institute of Technology Mesra, Ranchi 835215, India.
Planar hexacoordination is an extremely uncommon phenomenon for the atoms that belong to the main group. Within this article, we have analyzed the potential energy surfaces (PES) of ABeCB (A = N, P, As, Sb, and Bi) clusters in neutral, monocationic, monoanionic, dicationic, and dianionic states using density functional theory (DFT). Among which PBeCB, PBeCB, AsBeCB, AsBeCB, SbBeCB, and BiBeCB clusters contain a planar hexacoordinate boron (phB) atom in the global minimum energy structures with symmetry.
View Article and Find Full Text PDFChem Sci
December 2024
Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QR UK
The reaction chemistry of an unprecedented 'inorganic cumulene' - featuring a five-atom BNBNB chain - towards C[double bond, length as m-dash]O (and related) multiple bonds is disclosed. In marked contrast to related all-carbon systems, the intrinsic polarity of the BNBNB chain (featuring electron-rich nitrogen and electron-deficient boron centres) enables metathesis chemistry with electrophilic heteroallenes such as CO and with organic carbonyl compounds. Transfer of the borylimide unit to [CO], [CS], [PP{(NDippCH)}] and [C(H)Ph] moieties generates (boryl)N[double bond, length as m-dash]C[double bond, length as m-dash]X systems (X = O, S, PP{(NDippCH)}, C(H)Ph), driven thermodynamically by B-O bond formation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!