Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recent developments in nanoscale thermal metrology using electron microscopy have made impressive advancements in measuring either phononic or thermal transport properties of nanoscale samples. However, its potential in material analysis has never been considered. Here we introduce a direct thermal absorbance measurement platform in scanning electron microscope (SEM) and demonstrate that its signal can be utilized for atomic number () analysis at nanoscales. We prove that the measured absorbance of materials is complementary to signals of backscattering electrons but exhibits a much higher collection efficiency and signal-to-noise ratio. Thus, it not only enables successful detections of light elements/compounds under low acceleration voltages of SEM but also allows quantitative analyses in agreement with simulations. The direct thermal absorbance measurement platform would become an ideal tool for SEM, especially for thin films, light elements/compounds, or biological samples at nanoscales.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.1c04502 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!