Rechargeable aqueous zinc-ion batteries (ZIBs) are promising in stationary grid energy storage due to their advantages in safety and cost-effectiveness, and the search for competent cathode materials is one core task in the development of ZIBs. Herein, the authors design a 2D heterostructure combining amorphous vanadium pentoxide and electrochemically produced graphene oxide (EGO) using a fast and scalable spray drying technique. The unique 2D heterostructured xerogel is achieved by controlling the concentration of EGO in the precursor solution. Driven by the improved electrochemical kinetics, the resultant xerogel can deliver an excellent rate capability (334 mAh g at 5 A g ) as well as a high specific capacity (462 mAh g at 0.2 A g ) as the cathode material in ZIB. It is also shown that the coin cell constructed based on spray-dried xerogel can output steady, high energy densities over a broad power density window. This work provides a scalable and cost-effective approach for making high performance electrode materials from cheap sources through existing industrialized materials processing.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202105761DOI Listing

Publication Analysis

Top Keywords

scalable spray
8
spray drying
8
drying production
4
production amorphous
4
amorphous -ego
4
-ego heterostructured
4
heterostructured xerogels
4
xerogels high-rate
4
high-rate high-capacity
4
high-capacity aqueous
4

Similar Publications

: Drug delivery systems (DDSs) offer efficient treatment solutions to challenging diseases such as central nervous system (CNS) diseases by bypassing biological barriers such as the blood-brain barrier (BBB). Among DDSs, polymeric nanoparticles (NPs), particularly poly(lactic-co-glycolic acid) (PLGA) NPs, hold an outstanding position due to their biocompatible and biodegradable qualities. Despite their potential, the translation of PLGA NPs from laboratory-scale production to clinical applications remains a significant challenge.

View Article and Find Full Text PDF

Self-emulsifying drug delivery systems (SEDDS) represent an innovative approach to improving the solubility and bioavailability of poorly water-soluble drugs, addressing significant challenges associated with oral drug delivery. This review highlights the advancements and applications of SEDDS, including their transition from liquid to solid forms, while addressing the formulation strategies, characterization techniques, and future prospects in pharmaceutical sciences. The review systematically analyzes existing studies on SEDDS, focusing on their classification into liquid and solid forms and their preparation methods, including spray drying, hot-melt extrusion, and adsorption onto carriers.

View Article and Find Full Text PDF

The design of electrically conductive textiles appears to be a promising approach to combat the existing challenge of deaths caused by severe cold climates around the globe. However, reports on the scalable fabrication of tolerant conductive textiles maintaining a low electrical resistance with an ability for unperturbed and prolonged performance are scarce. Here, a breathable and wrappable water-repellent conductive textile (water-repellent CT) with electrothermal and photothermal conversion abilities at low external voltage and in weak solar light is introduced, respectively.

View Article and Find Full Text PDF

Scalable, Flexible, and UV-Resistant Bacterial Cellulose Composite Film for Daytime Radiative Cooling.

ACS Appl Mater Interfaces

January 2025

School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Energy Devices & Interface Science, Nanjing University of Information Science & Technology, Ning-Liu Road 219, Nanjing 210026, China.

Radiative cooling, a passive cooling technology, functions by reflecting the majority of solar radiation (within the solar spectrum of 0.3-2.5 μm) and emitting thermal radiation (within the atmospheric windows of 8-13 μm and 16-20 μm).

View Article and Find Full Text PDF

We report a new approach for fabricating gate-tunable thermal emissivity surfaces by spraying them on graphene ink. The devices consist of a multilayer graphene (MLG)/porous alumina membrane/gold stack, in which the MLG is deposited by spraying the graphene ink onto the porous membrane using an airbrush. The graphene ink consists of μm-sized flakes of MLG suspended in a solution of polyvinylpyrrolidone and ethylene glycol.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!