The field of artificial intelligence (AI) in medical imaging is undergoing explosive growth, and Radiology is a prime target for innovation. The American College of Radiology Data Science Institute has identified more than 240 specific use cases where AI could be used to improve clinical practice. In this context, thousands of potential methods are developed by research labs and industry innovators. Deploying AI tools within a clinical enterprise, even on limited retrospective evaluation, is complicated by security and privacy concerns. Thus, innovation must be weighed against the substantive resources required for local clinical evaluation. To reduce barriers to AI validation while maintaining rigorous security and privacy standards, we developed the AI Imaging Incubator. The AI Imaging Incubator serves as a DICOM storage destination within a clinical enterprise where images can be directed for novel research evaluation under Institutional Review Board approval. AI Imaging Incubator is controlled by a secure HIPAA-compliant front end and provides access to a menu of AI procedures captured within network-isolated containers. Results are served via a secure website that supports research and clinical data formats. Deployment of new AI approaches within this system is streamlined through a standardized application programming interface. This manuscript presents case studies of the AI Imaging Incubator applied to randomizing lung biopsies on chest CT, liver fat assessment on abdomen CT, and brain volumetry on head MRI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9485498PMC
http://dx.doi.org/10.1007/s10278-022-00601-2DOI Listing

Publication Analysis

Top Keywords

imaging incubator
16
clinical enterprise
8
security privacy
8
imaging
5
clinical
5
workflow integration
4
integration tools
4
tools hospital
4
hospital radiology
4
radiology rapid
4

Similar Publications

AGEing of collagen: The effects of glycation on collagen's stability, mechanics and assembly.

Matrix Biol

February 2025

Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada. Electronic address:

Advanced Glycation End Products (AGEs) are the end result of the irreversible, non-enzymatic glycation of proteins by reducing sugars. These chemical modifications accumulate with age and have been associated with various age-related and diabetic complications. AGEs predominantly accumulate on proteins with slow turnover rates, of which collagen is a prime example.

View Article and Find Full Text PDF

Inefficient endosomal escape has been regarded as the main bottleneck for intracellular nucleic acid delivery. While most research efforts have been spent on designing various nano-sized particles, we took a different path here, investigating micron-sized carriers for direct cytosol entry. Using the spontaneous co-assembly of mRNA and the designer 27 amino acid oligopeptide named pepMAX2, micron-sized co-assemblies were obtained with various sizes by altering the concentration of NaCl salt and time for pre-incubation.

View Article and Find Full Text PDF

FAP-targeted radioligand therapy with Ga/Lu-DOTA-2P(FAPI) enhance immunogenicity and synergize with PD-L1 inhibitors for improved antitumor efficacy.

J Immunother Cancer

January 2025

Department of Nuclear Medicine and Minnan PET Center, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China

Background: Fibroblast activation protein (FAP)-targeted radioligand therapy, with immunomodulatory effects, has shown efficacy in both preclinical and clinical studies. We recently reported on a novel dimeric FAP-targeting radiopharmaceutical, Ga/Lu-DOTA-2P(FAPI), which demonstrated increased tumor uptake and prolonged retention in various cancers. However, further exploration is required to understand the therapeutic efficacy and underlying mechanisms of combining Ga/Lu-DOTA-2P(FAPI) radioligand therapy with PD-1/PD-L1 immunotherapy.

View Article and Find Full Text PDF

A facile assay for zDHHC palmitoyl transferase activation elucidates effects of mutation and modification.

J Lipid Res

January 2025

Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan. Electronic address:

At least 10% of proteins constituting the human proteome are subject to S-acylation by a long-chain fatty acid, thioesterified to a Cys thiol side chain. Fatty S-acylation (prototypically, S-palmitoylation) operates across eukaryotic phylogeny and cell type. S-palmitoylation is carried out in mammalian cells by a family of 23-24 dedicated zDHHC palmitoyl transferase enzymes, and mutation of zDHHCs is associated with a number of human pathophysiologies.

View Article and Find Full Text PDF

Do-it-yourself instrument integration into an existing mammalian cell line development automation platform.

SLAS Technol

January 2025

Cell Line Development, WuXi Biologics, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China.

Laboratory automation in the biopharmaceutical industry as a rule requires contracted service from highly professional automation solution provider, at times involving the purchase and development of specialized or customized hardware and software, which can be proprietary and expensive. Alternatively, with the availability of open-source software customized for automation, it is possible to automate existing laboratory instruments in a do-it-yourself (DIY), low-cost, and flexible fashion. In this work, we used an open-source scripting language, AutoIt, to integrate an existing microplate imager into an existing automation platform that is already equipped with a 4-axis robotic arm and an automated incubator, to achieve automation of the imaging procedure in our cell line development workflow.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!