Single particle tracking plays a significant role in biophysics through its ability to reveal dynamic mechanisms and physical properties of biological macromolecules inside living cells. The motion of these molecules can often be modeled as a confined diffusion. The standard paradigm in the biophysics community is to first estimate the trajectory of a particle and then use a technique such as the Mean Square Displacement or the Maximum Likelihood Estimation (MLE) to determine model parameters. These approaches, however, ignore the fact that localization and parameter estimation problems are coupled. We have previously introduced a framework based on optimal estimation theory to simultaneously do localization and parameter estimation. Here we build upon that work by expanding it to include a recent advance in imaging three dimensional motion, namely the Double-Helix (DH) engineered Point Spread Function (PSF). The DH-PSF encodes the axial position of the particle directly into the 2D image acquired by the camera mounted to the microscope. Our approach uses Expectation Maximization (EM) and Sequential Monte Carlo (SMC) to handle the nonlinearities in the observation and motion models. In this paper, we also improve upon the computational complexity of this scheme, using a Gaussian Particle Filter and Backward Simulation Particle Smoother in the SMC elements of the algorithm. We compare our scheme through simulation to state of the art methods based on localization using Gaussian fitting followed by MLE of the model parameters. These results show that our method outperforms GF-MLE at the low signal intensity levels common to biophysical experiments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8903091PMC
http://dx.doi.org/10.1016/j.ifacol.2021.08.411DOI Listing

Publication Analysis

Top Keywords

model parameters
12
single particle
8
particle tracking
8
confined diffusion
8
point spread
8
spread function
8
localization parameter
8
parameter estimation
8
particle
6
joint estimation
4

Similar Publications

Objective: This study aims to investigate the relationship between preoperative cervical intervertebral foramen width and area and the persistence of postoperative pain in patients diagnosed with cervical spondylotic radiculopathy (CSR).

Methods: Patients were divided into two groups, based on their pain relief at the 6-month postoperative follow-up: the pain relief group and the persistent pain group. We compared various parameters, including age, sex, body mass index (BMI), duration of symptoms, preoperative Japanese Orthopedic Association (JOA) score, Neck Disability Index (NDI) score, postoperative ratio of disc space distraction, preoperative width of the intervertebral foramen (WIVF), and area of the intervertebral foramen (AIVF) between the two groups.

View Article and Find Full Text PDF

Background: Assessing the difficulty of impacted lower third molar (ILTM) surgical extraction is crucial for predicting postoperative complications and estimating procedure duration. The aim of this study was to evaluate the effectiveness of a convolutional neural network (CNN) in determining the angulation, position, classification and difficulty index (DI) of ILTM. Additionally, we compared these parameters and the time required for interpretation among deep learning (DL) models, sixth-year dental students (DSs), and general dental practitioners (GPs) with and without CNN assistance.

View Article and Find Full Text PDF

Anti-IL-5 treatment, but not neutrophil interference, attenuates inflammation in a mixed granulocytic asthma mouse model, elicited by air pollution.

Respir Res

January 2025

Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Medical Research Building (MRB) II, Ghent University Hospital, 2 Floor, Corneel Heymanslaan 10, 9000, Ghent, Belgium.

Introduction: Diesel exhaust particles (DEP) have been proven to aggravate asthma pathogenesis. We previously demonstrated that concurrent exposure to house dust mite (HDM) and DEP in mice increases both eosinophils and neutrophils in bronchoalveolar lavage fluid (BALF) and also results in higher levels of neutrophil-recruiting chemokines and neutrophil extracellular trap (NET) formation compared to sole HDM, sole DEP or saline exposure. We aimed to evaluate whether treatment with anti-IL-5 can alleviate the asthmatic features in this mixed granulocytic asthma model.

View Article and Find Full Text PDF

Background: High-throughput behavioral analysis is important for drug discovery, toxicological studies, and the modeling of neurological disorders such as autism and epilepsy. Zebrafish embryos and larvae are ideal for such applications because they are spawned in large clutches, develop rapidly, feature a relatively simple nervous system, and have orthologs to many human disease genes. However, existing software for video-based behavioral analysis can be incompatible with recordings that contain dynamic backgrounds or foreign objects, lack support for multiwell formats, require expensive hardware, and/or demand considerable programming expertise.

View Article and Find Full Text PDF

Virtual biopsy for non-invasive identification of follicular lymphoma histologic transformation using radiomics-based imaging biomarker from PET/CT.

BMC Med

January 2025

Department of Nuclear Medicine, West China Hospital, Sichuan University, Guoxue Alley, Address: No.37, Chengdu City, Sichuan, 610041, China.

Background: This study aimed to construct a radiomics-based imaging biomarker for the non-invasive identification of transformed follicular lymphoma (t-FL) using PET/CT images.

Methods: A total of 784 follicular lymphoma (FL), diffuse large B-cell lymphoma, and t-FL patients from 5 independent medical centers were included. The unsupervised EMFusion method was applied to fuse PET and CT images.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!