Maintenance of energy balance is essential for overall organismal health. Mammals have evolved complex regulatory mechanisms that control energy intake and expenditure. Traditionally, studies have focused on understanding the role of macronutrient physiology in energy balance. In the present study, we examined the role of the essential micronutrient iron in regulating energy balance. We found that a short course of dietary iron caused a negative energy balance resulting in a severe whole body wasting phenotype. This disruption in energy balance was because of impaired intestinal nutrient absorption. In response to dietary iron-induced negative energy balance, adipose triglyceride lipase (ATGL) was necessary for wasting of subcutaneous white adipose tissue and lipid mobilization. Fat-specific ATGL deficiency protected mice from fat wasting, but caused a severe cachectic response in mice when fed iron. Our work reveals a mechanism for micronutrient control of lipolysis that is necessary for regulating mammalian energy balance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8899412PMC
http://dx.doi.org/10.1016/j.isci.2022.103941DOI Listing

Publication Analysis

Top Keywords

energy balance
32
negative energy
12
energy
9
adipose triglyceride
8
triglyceride lipase
8
lipid mobilization
8
balance
8
lipase mediates
4
mediates lipolysis
4
lipolysis lipid
4

Similar Publications

Predecting power transformer health index and life expectation based on digital twins and multitask LSTM-GRU model.

Sci Rep

January 2025

Department of Embedded Network Systems and Technology, Faculty of Artificial Intelligence, Kafrelsheikh University, El-Geish St, Kafrelsheikh, 33516, Egypt.

Power transformers play a crucial role in enabling the integration of renewable energy sources and improving the overall efficiency and reliability of smart grid systems. They facilitate the conversion, transmission, and distribution of power from various sources and help to balance the load between different parts of the grid. The Transformer Health Index (THI) is one of the most important indicators of ensuring their reliability and preventing unplanned outages.

View Article and Find Full Text PDF

Copper-based catalysts are the choice for producing multi-carbon products (C2+) during CO2 electroreduction (CO2RR), where the Cu0Cuδ+ pair sites are proposed to be synergistic hotspots for C-C coupling. Maintaining their dynamic stability requires precise control over electron affinity and anion vacancy formation energy, posing significant challenges. Here, we present an in-situ reconstruction strategy to create dynamically stable Cu0Cu0.

View Article and Find Full Text PDF

For batteries to function effectively all active material must be accessible requiring both electron and ion transport to each particle. A common approach to generating the needed conductive network is the addition of carbon. An alternative approach is the electrochemically induced formation of conductive reaction products generated with intimate contact to the active material.

View Article and Find Full Text PDF

Colloidal quantum dot (CQD) near-infrared (NIR) upconversion devices (UCDs) can directly convert low-energy NIR light into higher energy visible light without the need for additional integrated circuits, which is advantageous for NIR sensing and imaging. However, the state-of-the-art CQD NIR upconverters still face challenges, including high turn-on voltage (), low photon-to-photon (p-p) upconversion efficiency, and low current on/off ratio, primarily due to inherent limitations in the device structure and operating mechanisms. In this work, we developed a CQD NIR UCD based on a hole-only injection mechanism.

View Article and Find Full Text PDF

The mismatch between the nutrient intake from the diet and the output by the mammary gland causes a negative energy balance in transition dairy cows, that, if excessive, can promote several metabolic disorders. Other relevant phenomena occur during transition, such as inflammation at calving and changes in immunocompetence, redox balance, and mineral metabolism. Despite the efforts, some aspects of the adaptive mechanisms observed in the transition period still need to be clarified.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!