Au metal nanoparticles as artificial nanozymes have attracted wide interest in biotechnology due to high stability and easy synthesis. Unfortunately, its catalytic activity is limited by the uniform surface electron distribution, fundamentally affecting the oxidation efficiency of glucose. Here, we synthesized AuPt bimetallic nanoparticles with unique surface electron structure due to the coupling effect of the two metal components, achieving improved glucose catalytic oxidase. Because of the effective work function difference between the two metals in AuPt, the electrons will transfer from Au to accumulate on Pt, simultaneously contributing to the substantial enhancement of Au-induced glucose oxidase and Pt-induced catalase performance. We systematically studied the enzyme-catalytic efficiency of AuPt with varied two metal proportions, in which Au:Pt at 3:1 showed the highest catalytic efficiency of glucose oxidase in solution. The AuPt nanoparticles were further co-cultured with cells and also showed excellent biological activity for glucose oxidase. This work demonstrates that the physicochemical properties between different metals can be exploited for engineering high-performance metal nanoparticle-based nanozymes, which opens up a new way to rationally design and optimize artificial nanozymes to mimic natural enzymes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8899206 | PMC |
http://dx.doi.org/10.3389/fchem.2022.854516 | DOI Listing |
Nat Commun
January 2025
Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
Glucose deprivation, a hallmark of the tumor microenvironment, compels tumor cells to seek alternative energy sources for survival and growth. Here, we show that glucose deprivation upregulates the expression of mitochondrial-cytochrome c oxidase II (MT-CO2), a subunit essential for the respiratory chain complex IV, in facilitating glutaminolysis and sustaining tumor cell survival. Mechanistically, glucose deprivation activates Ras signaling to enhance MT-CO2 transcription and inhibits IGF2BP3, an RNA-binding protein, to stabilize MT-CO2 mRNA.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
Colon cancer is a major global health threat. Early detection and treatment are crucial for improving survival rates. Conventional methods, like colonoscopies and CT scans, have limitations, emphasizing the need for innovative strategies.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
Effective glycemic control is paramount for optimal wound healing in diabetic patients. Traditional antibacterial and anti-inflammatory treatments, while important, often fall short in addressing the hyperglycemic conditions of diabetic wounds. Therefore, the development of novel therapeutic strategies for accelerating diabetic wound healing has garnered escalating attention.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
Understanding the molecular mechanisms underlying insect resistance to (Bt) pesticidal proteins is crucial for sustainable pest management. Here, we found that downregulation of the ecdysone oxidase gene () in the normal feeding stages contributes to increased 20-hydroxyecdysone (20E) titer and mediates resistance to the Bt Cry1Ac toxin. The gene was cloned and its expression was significantly downregulated in the midgut of Bt-resistant and Cry1Ac-selected .
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!