A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An Efficient Stacked Deep Transfer Learning Model for Automated Diagnosis of Lyme Disease. | LitMetric

Lyme disease is one of the most common vector-borne infections. It typically causes cardiac illnesses, neurologic illnesses, musculoskeletal disorders, and dermatologic conditions. However, most of the time, it is poorly diagnosed due to many similarities with other diseases such as drug rash. Given the potentially serious consequences of unnecessary antimicrobial treatments, it is essential to understand frequent and uncommon diagnoses that explain symptoms in this population. Recently, deep learning models have been used for the diagnosis of various rash-related diseases. However, these models suffer from overfitting and color variation problems. To overcome these problems, an efficient stacked deep transfer learning model is proposed that can efficiently distinguish between patients infected with Lyme (+) or infected with other infections. 2 order edge-based color constancy is used as a preprocessing approach to reduce the impact of multisource light from images acquired under different setups. The AlexNet pretrained learning model is used for building the Lyme disease diagnosis model. To prevent overfitting, data augmentation techniques are also used to augment the dataset. In addition, 5-fold cross-validation is also used. Comparative analysis indicates that the proposed model outperforms the existing models in terms of accuracy, f-measure, sensitivity, specificity, and area under the curve.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8901315PMC
http://dx.doi.org/10.1155/2022/2933015DOI Listing

Publication Analysis

Top Keywords

learning model
12
lyme disease
12
efficient stacked
8
stacked deep
8
deep transfer
8
transfer learning
8
model
5
learning
4
model automated
4
automated diagnosis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!