In bottom-up neuroscience, questions on neural information processing are addressed by engineering small but reproducible biological neural networks of defined network topology . The network topology can be controlled by culturing neurons within polydimethylsiloxane (PDMS) microstructures that are combined with microelectrode arrays (MEAs) for electric access to the network. However, currently used glass MEAs are limited to 256 electrodes and pose a limitation to the spatial resolution as well as the design of more complex microstructures. The use of high density complementary metal-oxide-semiconductor (CMOS) MEAs greatly increases the spatial resolution, enabling sub-cellular readout and stimulation of neurons in defined neural networks. Unfortunately, the non-planar surface of CMOS MEAs complicates the attachment of PDMS microstructures. To overcome the problem of axons escaping the microstructures through the ridges of the CMOS MEA, we stamp-transferred a thin film of hexane-diluted PDMS onto the array such that the PDMS filled the ridges at the contact surface of the microstructures without clogging the axon guidance channels. This method resulted in 23 % of structurally fully connected but sealed networks on the CMOS MEA of which about 45 % showed spiking activity in all channels. Moreover, we provide an impedance-based method to visualize the exact location of the microstructures on the MEA and show that our method can confine axonal growth within the PDMS microstructures. Finally, the high spatial resolution of the CMOS MEA enabled us to show that action potentials follow the unidirectional topology of our circular multi-node microstructure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8900719 | PMC |
http://dx.doi.org/10.3389/fnins.2022.829884 | DOI Listing |
PLoS One
January 2025
School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, Yunnan, China.
With the popularity of circular economy around the world, transactions in the second-hand sailboat market are extremely active. Determining pricing strategies and exploring their regional effects is a blank area of existing research and has important practical and statistical significance. Therefore, this article uses the random forest model and XGBoost algorithm to identify core price indicators, and uses an innovative rolling NAR dynamic neural network model to simulate and predict second-hand sailboat price data.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Electrical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran.
CNN is considered an efficient tool in brain image segmentation. However, neonatal brain images require specific methods due to their nature and structural differences from adult brain images. Hence, it is necessary to determine the optimal structure and parameters for these models to achieve the desired results.
View Article and Find Full Text PDFPLoS One
January 2025
School of Civil and Architectural Engineering, Harbin University, Harbin, China.
This work explores an intelligent field irrigation warning system based on the Enhanced Genetic Algorithm-Backpropagation Neural Network (EGA-BPNN) model in the context of smart agriculture. To achieve this, irrigation flow prediction in agricultural fields is chosen as the research topic. Firstly, the BPNN principles are studied, revealing issues such as sensitivity to initial values, susceptibility to local optima, and sample dependency.
View Article and Find Full Text PDFPLoS One
January 2025
Rice Department, Bangkok, Thailand.
Bacterial Leaf Blight (BLB) usually attacks rice in the flowering stage and can cause yield losses of up to 50% in severely infected fields. The resulting yield losses severely impact farmers, necessitating compensation from the regulatory authorities. This study introduces a new pipeline specifically designed for detecting BLB in rice fields using unmanned aerial vehicle (UAV) imagery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!