A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Capability of the TFM Approach to Predict Fluidization of Cohesive Powders. | LitMetric

Capability of the TFM Approach to Predict Fluidization of Cohesive Powders.

Ind Eng Chem Res

Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13/III, 8010 Graz, Austria.

Published: March 2022

The fluidization behavior of cohesive particles was investigated using an Euler-Euler approach. To do so, a two-fluid model (TFM) platform was developed to account for the cohesivity of particles. Specifically, the kinetic theory of granular flow (KTGF) was modified based on the solid rheology developed by Gu et al. . The results of our simulations demonstrated that the modified TFM approach can successfully predict the formation of particle agglomerates and clusters in the fluidized bed, induced by the negative (tensile-dominant) pressure. The formation of such granules and clusters highly depended on the particle Bond number and the tensile pressure prefactor. To evaluate fluidization regimes, a set of simulations was conducted for a wide range of particle cohesivity (e.g., Bond number and tensile pressure prefactor) at two different fluidization numbers of 2 and 5. Our simulation results reveal the formation of four different regimes of fluidization for cohesive particles: (i) bubbling, (ii) bubbling-clustering, (iii) bubble-less fluidization, and (iv) stagnant bed. Comprehensive analysis of the shear-to-yield ratio reveals that the observed regime map is attributed to the competition between the shear stress and yield stress acting on the particles. The obtained regime map can be extended to incorporate the effect of dimensionless velocity and dimensionless diameter as a comprehensive fluidization chart for cohesive particles. Such fluidization charts can facilitate the design of fluidized beds by predicting the conditions under which the formation of particle agglomeration and clustering is likely in fluidized beds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8895407PMC
http://dx.doi.org/10.1021/acs.iecr.1c04786DOI Listing

Publication Analysis

Top Keywords

cohesive particles
12
tfm approach
8
approach predict
8
fluidization
8
fluidization cohesive
8
formation particle
8
bond number
8
number tensile
8
tensile pressure
8
pressure prefactor
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!