A visible-light-promoted atomic substitution reaction for transforming thiocacids into carboxylic acids with dimethyl sulfoxide (DMSO) as the oxygen source has been developed, affording various alkyl and aryl carboxylic acids in over 90% yields. The atomic substitution process proceeds smoothly through the photochemical reactivity of the formed hydrogen-bonding adduct between thioacids and DMSO. A DMSO-involved proton-coupled electron transfer (PCET) and the simultaneous generation of thiyl and hydroxyl radicals are proposed to be key steps for realizing the transformation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.2c00481DOI Listing

Publication Analysis

Top Keywords

carboxylic acids
12
atomic substitution
12
visible-light-promoted atomic
8
substitution process
8
transformation thioacids
4
thioacids carboxylic
4
acids visible-light-promoted
4
process visible-light-promoted
4
substitution reaction
4
reaction transforming
4

Similar Publications

Background: Prosthetic joint infection is a serious complication that can arise after total joint replacement surgery. When bacteria colonise an orthopaedic implant, they form biofilms that protect them from their environment, making them difficult to remove. Treatment is further complicated by a global rise of antimicrobial resistance.

View Article and Find Full Text PDF

Hydrothermal liquefaction (HTL) is a promising technology for converting wet biomass to liquid fuels. However, the biocrude yield and quality in this process are unsatisfactory without catalysts. Herein, a Ru/ZrO-SiO catalyst was prepared with the NaBH reducing method for the HTL of .

View Article and Find Full Text PDF

Recently, researchers have used silver nanoparticles (AgNPs) coupled with humic acid (HA) as antimicrobial agents. Herein, AgNPs were prepared and coupled with humic acid for their antimicrobial activities. The as-prepared AgNPs coupled with humic acid (HA) were characterized by an atomic force microscope (AFM), X-ray powder diffraction (XRD), zeta potential, zeta sizer, Fourier-transform infrared (FT-IR) spectroscopy, and UV-VIS spectrophotometer.

View Article and Find Full Text PDF

Atmospheric oxygen mediated oxidation coupling of primary and secondary alcohols: synthesis of pyrazolo[1,5-]pyrimidines.

Org Biomol Chem

January 2025

Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China.

An atmospheric oxygen-mediated oxidative coupling of primary and secondary alcohols for the synthesis of nitrogen-containing heterocycles has been developed. This method utilizes atmospheric oxygen as the sole, environmentally friendly oxidant to convert a variety of alkyl and aromatic primary alcohols into aldehyde equivalents, avoiding over-oxidation to carboxylic acids. Notably, these mild oxidation conditions are compatible with both primary and secondary alkyl alcohols as substrates.

View Article and Find Full Text PDF

Condensation of carboxylic acids with amines using the BocO/DMAP system under solvent-free conditions.

Org Biomol Chem

January 2025

Institute of Condensed Matter and Nanosciences, Molecules Solids and Reactivity (IMCN/MOST), Université Catholique de Louvain, Bâtiment Lavoisier, Pl. Louis Pasteur, 1, bte 3. 1348, Louvain La Neuve, Belgium.

The present study describes the use of the di--butyl dicarbonate (BocO)/4-(,-dimethylamino)pyridine (DMAP) system for the amidation of carboxylic acids under neat conditions without heating. A set of carboxylic acids was explored, such as non-steroidal anti-inflammatory drugs (NSAIDs), fatty acids and protected prolines in the presence of aromatic, benzylic and aliphatic amines as nucleophilic partners. The scope of this easy approach was extended to the preparation of thirty-two diverse carboxylic amides, which were recovered with isolated yields varying from moderate to excellent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!