A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Artificial Neural Network vs. Pharmacometric Model for Population Prediction of Plasma Concentration in Real-World Data: A Case Study on Valproic Acid. | LitMetric

We compared the predictive performance of an artificial neural network to traditional pharmacometric modeling for population prediction of plasma concentrations of valproate in real-world data. We included individuals aged 65 years or older with epilepsy who redeemed their first prescription of valproate after the diagnosis of epilepsy and had at least one valproate plasma concentration measured. A long short-term memory neural network (LSTM) was developed using the training data set to fit the LSTM and the test data set to validate the model. Predictions from the LSTM were compared with those obtained from the population predictions from a pharmacometric model by Birnbaum et al. which had the best predictive performance for population predictions of valproate concentrations in Danish databases. We used the cutoff of ± 20 mg/L of prediction error to define good predictions. A total of 1,252 individuals were included in the study. The LSTM fitted using the training data set had poor predictive performance in the test data set, but better than that of the pharmacometric model. The proportion of individuals with at least one predicted concentration within ± 20 mg/L of observed concentration was largest in case of the LSTM (64.4%, 95% confidence interval (CI): 58.4-70.2%) compared with the pharmacometric model by Birnbaum et al. (49.8%, 95% CI: 47.0-52.6%). LSTM shows better predictive performance to predict valproate plasma concentrations compared with a traditional pharmacometric model in the investigated setting with real-world data in older patients with epilepsy where information on exact timepoints for both dosing and plasma concentration measurement are missing.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cpt.2577DOI Listing

Publication Analysis

Top Keywords

pharmacometric model
20
predictive performance
16
data set
16
neural network
12
plasma concentration
12
real-world data
12
artificial neural
8
population prediction
8
prediction plasma
8
traditional pharmacometric
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!