A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Poly (ADP-ribose) polymerase 1-mediated defective mitophagy contributes to painful diabetic neuropathy in the db/db model. | LitMetric

Studies have shown that poly (ADP-ribose) polymerase 1 (PARP1) is involved in the pathological process of diabetes. Mitophagy is widely acknowledged to be a key regulatory process in maintaining reactive oxygen species homeostasis via lysosome degradation of damaged mitochondria. However, the regulatory role of PARP1 in mitophagy-related mitochondrial oxidative injury and progression of painful diabetic neuropathy (PDN) is unclear. In this study, we studied the in vitro and in vivo mechanisms of PARP1-mediated mitophagy blockade in a leptin gene-mutation (db/db) mouse model of PDN. Db/db mice models of PDN were established by assessing the sciatic nerve conduction velocity (SNCV), mechanical withdrawal threshold (MWT), and thermal withdrawal latency (TWL). The results showed that PARP1 activity and mitochondrial injury of dorsal root ganglion (DRG) neurons were increased, and mitophagy was impaired in PDN mice. PARP1 was found to mediate the impairment of mitophagy in DRG neurons isolated from PDN mice. PARP1 inhibitors (PJ34 or AG14361) attenuated diabetes-induced peripheral nerve hyperalgesia, restored DRG neuron mitophagy function and decreased mitochondrial oxidative injury. Mitophagy impairment induced by lysosome deacidificant (DC661) aggravated diabetes-induced DRG neuron mitochondrial oxidative stress and injury. Taken together, our data revealed that PARP1-induced defective mitophagy of DRG neurons is a key mechanism in diabetes-induced peripheral neuropathic injury. Inhibition of PARP1 and restoration of mitophagy function are potential therapeutic targets for PDN.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jnc.15606DOI Listing

Publication Analysis

Top Keywords

mitochondrial oxidative
12
drg neurons
12
mitophagy
9
poly adp-ribose
8
adp-ribose polymerase
8
defective mitophagy
8
painful diabetic
8
diabetic neuropathy
8
oxidative injury
8
pdn mice
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!