Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The issue of modeling and fault-tolerant control (FTC) design for a class of flexible air-breathing hypersonic vehicles (FAHVs) with actuator faults is investigated in this article. Different from previous research, the shear deformation of the fuselage is considered, and an ordinary differential equations-partial differential equations (ODEs-PDEs) coupled model is established for the FAHVs. A feedback control is proposed to ensure flight stable and an adaptive FTC method is designed to deal with actuator faults while suppressing the system's vibrations. Besides, the stability analysis of the closed-loop system is given via the Lyapunov direct method and an algorithm that transfers the bilinear matrix inequalities (BMIs) feasibility problem to the linear matrix inequalities (LMIs) feasibility problem is provided for determining the control gains. Finally, the numerical simulation results show that the proposed controller can stabilize the flight states and suppresses the vibration of the fuselage efficiently.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TCYB.2022.3140536 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!