Deep reinforcement learning (DRL) has been recognized as an efficient technique to design optimal strategies for different complex systems without prior knowledge of the control landscape. To achieve a fast and precise control for quantum systems, we propose a novel DRL approach by constructing a curriculum consisting of a set of intermediate tasks defined by fidelity thresholds, where the tasks among a curriculum can be statically determined before the learning process or dynamically generated during the learning process. By transferring knowledge between two successive tasks and sequencing tasks according to their difficulties, the proposed curriculum-based DRL (CDRL) method enables the agent to focus on easy tasks in the early stage, then move onto difficult tasks, and eventually approaches the final task. Numerical comparison with the traditional methods [gradient method (GD), genetic algorithm (GA), and several other DRL methods] demonstrates that CDRL exhibits improved control performance for quantum systems and also provides an efficient way to identify optimal strategies with few control pulses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNNLS.2022.3153502 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!