Crystalline-amorphous composite have the potential to achieve high strength and high ductility through manipulation of their microstructures. Here, we fabricate a TiZr-based alloy with micrometer-size equiaxed grains that are made up of three-dimensional bicontinuous crystalline-amorphous nanoarchitectures (3D-BCANs). In situ tension and compression tests reveal that the BCANs exhibit enhanced ductility and strain hardening capability compared to both amorphous and crystalline phases, which impart ultra-high yield strength (~1.80 GPa), ultimate tensile strength (~2.3 GPa), and large uniform ductility (~7.0%) into the TiZr-based alloy. Experiments combined with finite element simulations reveal the synergetic deformation mechanisms; i.e., the amorphous phase imposes extra strain hardening to crystalline domains while crystalline domains prevent the premature shear localization in the amorphous phases. These mechanisms endow our material with an effective strength-ductility-strain hardening combination.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8906574PMC
http://dx.doi.org/10.1126/sciadv.abm2884DOI Listing

Publication Analysis

Top Keywords

crystalline-amorphous nanoarchitectures
8
tizr-based alloy
8
strain hardening
8
crystalline domains
8
enhancing strength
4
ductility
4
strength ductility
4
ductility crystalline-amorphous
4
nanoarchitectures tizr-based
4
tizr-based alloys
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!