Environmental estrogen active compounds are strong determinants of estrogen receptor (ER)-positive breast cancers, and increased evidence indicates their contribution to chemotherapy resistance. In the current study, the efficacy of vincristine and tamoxifen, with the presence of diethylhexyl phthalate (DEHP) and bisphenol A (BPA) and the possible involvement of estrogen and estrogen receptor-related mechanisms, was evaluated in an ER+ mammary tumor cancer cell line, MCF-7. Chemotherapeutics tamoxifen as an estrogen receptor modulator and vincristine as an antimitotic compound were selected for evaluation against the presence of common endocrine disrupters. BPA and DEHP preincubation at their proliferative concentrations for 4 h was found to decrease the cytotoxicity of vincristine. mRNA and protein expression of ESR1 and ESR 2 were decreased by vincristine, while this decrease was reversed by DEHP and BPA. Both BPA and DEHP were able to interfere with the cytotoxic activity of vincristine against MCF-7 cells through ESR1 and ESR2. This study provides toxicological evidence for vincristine resistance and its relation to estrogen active environmental pollutants in ER+ breast cancer cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.chemrestox.2c00002 | DOI Listing |
Sci Total Environ
December 2024
Department of Paraclinical Sciences, Norwegian University of Life Sciences, Oslo, Norway.
The overall aim of the present study was to determine if exposure to three high volume plastic additives, including diethylhexyl phthalate (DEHP), bisphenol A (BPA) and benzotriazoles (BT), have the potential to promote adverse effects in Atlantic cod (G. morhua). Ex vivo precision cut - liver slices (PCLS) from six male juvenile Atlantic cod were exposed to four concentrations of mono-(2-ethylhexyl)-phthalate (MEHP, the main metabolite of DEHP), BPA and BT both singly and in mixtures ranging from 0.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Minderoo Foundation, Perth, WA 6000, Australia.
More than 16,000 chemicals are incorporated into plastics to impart properties such as color, flexibility, and durability. These chemicals may leach from plastics, resulting in widespread human exposure during everyday use. Two plastic-associated chemicals-bisphenol A (BPA) and di(2-ethylhexyl) phthalate (DEHP)-and a class of chemicals-brominated flame retardants [polybrominated diphenyl ethers (PBDEs)]-are credibly linked to adverse health and cognitive impacts.
View Article and Find Full Text PDFBull Environ Contam Toxicol
December 2024
School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui West Rode, Xiqing District, Tianjin, 300384, China.
The chronic ecological risks posed by residual PAEs in China remain unclear. In this study, we analyzed the spatial distribution of five typical PAEs in the surface waters of China, dibutyl phthalate (DBP), diethylhexyl phthalate (DEHP), butylbenzyl phthalate (BBP), diethyl phthalate (DEP), and dimethyl phthalate (DMP). The highest concentration of PAEs were detected in the Liao River, ranging from 5 to 79.
View Article and Find Full Text PDFSci Total Environ
December 2024
School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, China. Electronic address:
The alarming surge in electronic waste (e-waste) in Hong Kong has heightened concerns regarding occupational exposure to a myriad of pollutants. Among these, polycyclic aromatic hydrocarbons (PAHs), phthalates (PAEs), and per- and polyfluoroalkyl substances (PFASs) are prevalent and known for their harmful effects, including the induction of oxidative stress and DNA damage, thereby contributing to various diseases. This study addresses gaps in knowledge by investigating exposure levels of these pollutants-measured via hydroxylated PAHs (OH-PAHs), phthalate metabolites (mPAEs), and PFASs-in urine from 101 e-waste workers and 100 office workers.
View Article and Find Full Text PDFToxicol Ind Health
February 2025
Department of Medical Biochemistry, Koc University, Sariyer, Istanbul.
Di(2-ethylhexyl) phthalate (DEHP), a widely utilized plasticizer in various consumer products, is classified as an endocrine disruptor and has been implicated in numerous adverse health effects, including oxidative stress, inflammation, and metabolic disturbances. Despite the growing body of literature addressing the systemic effects of DEHP, the specific influence of DEHP-induced oxidative stress on mitochondrial function within detoxification organs, particularly the liver and kidneys, remains largely unexplored. This study evaluated the effects of DEHP exposure (0, 100, 200, and 400 mg/kg/day) on mitochondrial oxidative stress, trace elements, and mineral metabolism associated with signaling pathways in the liver and kidneys of rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!