The removal of arsenite [As(III)] from drinking water was investigated in a column at flow rates of 2.0 and 5.0 mL/min (up-flow direction) using bark-based magnetic iron oxide particles (BMIOP) prepared by coating (Fe(NO).9HO) over Tamarindus Indica bark. The BMIOP was compared with regenerated BMIOP, commercial activated carbon, commercial activated alumina (AlO). At 2.0 mL/min, empty bed contact time (EBCT), breakthrough time (BT), the volume of treated water and breakthrough capacity (BC) on fresh BMIOP were found to be 6.8 min, 33.15 h, 4.380 L and 0.742 mg/g, respectively, and at 5.0 mL/min, were found to be 4.1 min, 13 h, 3.675 L and 0.453 mg/g respectively. EBCT, BT and BC were increased by 65.85%, 155% and 63.79%, respectively, as the flow rate was reduced from 5.0 to 2.0 mL/min. After regeneration of BMIOP, EBCT, BT, saturated time, BC and saturation capacity (SC) were reduced by 21.95%, 15.38%, 55.15%, 16.78% and 29.71%, respectively. The BC of fresh BMIOP was increased by factors 4.15, 3.60 and 1.20 and SC by factors 9.51, 7.88 and 1.42 compared to commercial activated carbon, commercial activated AlO and regenerated BMIOP, respectively. Logit model could be used for the design of the adsorption column. Thomas model and artificial neural network (ANN) were applied to predict the characteristic column parameters useful for process design. Quality of treated water meets BIS requirements. Toxicity Characteristic Leaching Procedure (TCLP) and semi-dynamic tests show that the exhausted BMIOP is safe for disposal in a secure landfill; hence, BMIOP has been proved to separate As(III) from water.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-022-19443-0DOI Listing

Publication Analysis

Top Keywords

commercial activated
16
bmiop
10
drinking water
8
bark-based magnetic
8
magnetic iron
8
iron oxide
8
regenerated bmiop
8
activated carbon
8
carbon commercial
8
treated water
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!