Although B cells are essential for humoral immunity and show noteworthy immunomodulatory activity through antibody-independent functions, the role of B cells in regulating Treg cell responses remains controversial. Tregs (CD4+CD25+Foxp3+) are considered to play an immunoprotective role in viral myocarditis (VMC) by controlling autoimmune effector T cells. Here, we proved that B-cell knockout can not only lead to significant reductions in Tregs in the spleen, blood, and heart of VMC mice but also decrease the activation and immune function of splenic Tregs, which was reversed by adoptive transfer of B cells; the transcription levels of TGF-β and Foxp3 in the myocardium were also significantly reduced. B-cell depletion by anti-CD20 impaired the anti-inflammatory function of splenic Tregs and the homeostasis of myocardial Tregs population. Moreover, B cells can convert CD4+CD25- T cells into Foxp3+ and Foxp3-, two functionally suppressive Treg subgroups. Although the reduction in myocardial inflammation in BKO mice indicates that B cells may play a proinflammatory role, the beneficial side of B cells cannot be ignored, that is, to control autoimmunity by maintaining Treg numbers. The results observed in the animal model of VMC highlight the potential harm of rituximab in the nonselective depletion of B cells in clinical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9113299 | PMC |
http://dx.doi.org/10.1093/cei/uxac015 | DOI Listing |
J Cell Sci
March 2025
Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
Mitochondria perform diverse functions, such as producing ATP through oxidative phosphorylation, synthesizing macromolecule precursors, maintaining redox balance, and many others. Given this diversity of functions, we and others have hypothesized that cells maintain specialized subpopulations of mitochondria. To begin addressing this hypothesis, we developed a new dual-purification system to isolate subpopulations of mitochondria for chemical and biochemical analyses.
View Article and Find Full Text PDFBiol Open
March 2025
Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, Tampa, FL 33602, USA.
During embryonic development vascular endothelial and hematopoietic cells are thought to originate from a common precursor, the hemangioblast. An evolutionarily conserved ETS transcription factor FLI1 has been previously implicated in the hemangioblast formation and hematopoietic and vascular development. However, its role in regulating hemangioblast transition into hematovascular lineages is still incompletely understood.
View Article and Find Full Text PDFFASEB J
March 2025
Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia.
Glaucoma, a leading cause of irreversible blindness, is characterized by the progressive loss of retinal ganglion cells (RGCs) and optic nerve damage, often associated with elevated intraocular pressure (IOP). Retinoid X receptors (RXRs) are ligand-activated transcription factors crucial for neuroprotection, as they regulate gene expression to promote neuronal survival via several biochemical networks and reduce neuroinflammation. This study investigated the therapeutic potential of 9-cis-13,14-dihydroretinoic acid (9CDHRA), an endogenous retinoid RXR agonist, in mitigating RGC degeneration in a high-IOP-induced experimental model of glaucoma.
View Article and Find Full Text PDFFASEB J
March 2025
Department of Oncology, The Central Hospital of Yongzhou, Yongzhou, Hunan, China.
The ribophorin family, including RPN1, has been associated with tumor progression, but its specific role in pan-cancer dynamics remains unclear. Using data from TCGA, GTEx, and Ualcan databases, we investigated the relationship of RPN1 with prognosis, genomic alterations, and epigenetic modifications across various cancers. Differential analysis revealed elevated RPN1 expression in multiple cancer types, indicating a potential prognostic value.
View Article and Find Full Text PDFFASEB J
March 2025
Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA.
Butyrophilin 3A1 (BTN3A1) is an integral membrane protein capable of detecting phosphoantigens, like (E)-4-hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP), through its internal B30.2 domain. Detection of phosphoantigens leads to interactions with butyrophilin 2A1 and the subsequent activation of γδ-T cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!