A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Light-Field Microscopy for Optical Imaging of Neuronal Activity: When Model-Based Methods Meet Data-Driven Approaches. | LitMetric

AI Article Synopsis

  • Understanding neuron networks is a major challenge in neuroscience, requiring the observation of large neuron populations in the brain.
  • Light-field microscopy (LFM) is a promising technique for high-speed 3D imaging, capturing volumetric data quickly and efficiently.
  • The paper reviews current computational methods for LFM, emphasizing the integration of physics and machine learning to improve neuronal activity analysis.

Article Abstract

Understanding how networks of neurons process information is one of the key challenges in modern neuroscience. A necessary step to achieve this goal is to be able to observe the dynamics of large populations of neurons over a large area of the brain. Light-field microscopy (LFM), a type of scanless microscope, is a particularly attractive candidate for high-speed three-dimensional (3D) imaging. It captures volumetric information in a single snapshot, allowing volumetric imaging at video frame-rates. Specific features of imaging neuronal activity using LFM call for the development of novel machine learning approaches that fully exploit priors embedded in physics and optics models. Signal processing theory and wave-optics theory could play a key role in filling this gap, and contribute to novel computational methods with enhanced interpretability and generalization by integrating model-driven and data-driven approaches. This paper is devoted to a comprehensive survey to state-of-the-art of computational methods for LFM, with a focus on model-based and data-driven approaches.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7612478PMC
http://dx.doi.org/10.1109/MSP.2021.3123557DOI Listing

Publication Analysis

Top Keywords

data-driven approaches
12
light-field microscopy
8
imaging neuronal
8
neuronal activity
8
computational methods
8
microscopy optical
4
imaging
4
optical imaging
4
activity model-based
4
model-based methods
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!