Infectious threats, like the COVID-19 pandemic, hinder maintenance of a productive and healthy workforce. If subtle physiological changes precede overt illness, then proactive isolation and testing can reduce labor force impacts. This study hypothesized that an early infection warning service based on wearable physiological monitoring and predictive models created with machine learning could be developed and deployed. We developed a prototype tool, first deployed June 23, 2020, that delivered continuously updated scores of infection risk for SARS-CoV-2 through April 8, 2021. Data were acquired from 9381 United States Department of Defense (US DoD) personnel wearing Garmin and Oura devices, totaling 599,174 user-days of service and 201 million hours of data. There were 491 COVID-19 positive cases. A predictive algorithm identified infection before diagnostic testing with an AUC of 0.82. Barriers to implementation included adequate data capture (at least 48% data was needed) and delays in data transmission. We observe increased risk scores as early as 6 days prior to diagnostic testing (2.3 days average). This study showed feasibility of a real-time risk prediction score to minimize workforce impacts of infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8904796PMC
http://dx.doi.org/10.1038/s41598-022-07764-6DOI Listing

Publication Analysis

Top Keywords

wearable physiological
8
physiological monitoring
8
diagnostic testing
8
data
5
real-time infection
4
infection prediction
4
prediction wearable
4
monitoring aid
4
aid military
4
military workforce
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!