Autoimmune thyroiditis (AIT) has a complex etiology and the susceptibility to it is determined by a combination of genetic and environmental factors, although these are not yet fully understood. The present research aimed to explore the DNA methylation patterns in whole blood of extrinsic apoptotic signaling pathway related genes in AIT among areas with different iodine levels. We selected the iodine-fortification areas (IFA), iodine-adequate areas (IAA) and water-based iodine-excess areas (IEA) from Shandong Province of China as survey sites. Totally 176 AIT cases and 176 controls were included. MethylTargetTM and QT-PCR technology were used to detect candidate genes' DNA methylation levels and mRNA expression levels, respectively. We found that DAPK1 DNA methylation levels in AIT cases (especially in female) were significantly higher than controls (t=2.7715, P=0.0059; t=2.4638, P=0.0143 in female). There were differences in DAPK1(t=2.5384, P=0.0121), TNFSF8(t=2.1667, P=0.0334) and TNFAIP8(t=2.5672, P=0.0121) genes methylation between cases and controls with different water iodine levels. The mRNA expression of DAPK1(t=4.329, P<0.001) and TNFAIP8(t=3.775, P<0.001) in the cases were increased. We identified the differences in the DNA methylation status of the extrinsic apoptotic signaling pathway related genes between AIT and controls and in different iodine levels areas. The results were verified at the mRNA level. The environmental iodine may affect DNA methylation to some extent.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S0007114522000721DOI Listing

Publication Analysis

Top Keywords

dna methylation
16
iodine levels
12
methylation patterns
8
extrinsic apoptotic
8
apoptotic signaling
8
signaling pathway
8
pathway genes
8
autoimmune thyroiditis
8
areas iodine
8
ait cases
8

Similar Publications

Background: Hippocampal volume increases throughout early development and is an important indicator of cognitive abilities and mental health. However, hippocampal development is highly vulnerable to exposures during development, as seen by smaller hippocampal volume and differential epigenetic programming in genes implicated in mental health. However, few studies have investigated hippocampal volume in relation to the peripheral epigenome across development, and even less is known about potential genetic moderators.

View Article and Find Full Text PDF

Motivation: Since their introduction about 10 years ago, methylation clocks have provided broad insights into the biological age of different species, tissues, and in the context of several diseases or aging. However, their application to single-cell methylation data remains a major challenge, because of the inherent sparsity of such data, as many CpG sites are not covered. A methylation clock applicable on single-cell level could help to further disentangle the processes that drive the ticking of epigenetic clocks.

View Article and Find Full Text PDF

Characterization of tumor epigenetic aberrations is integral to understanding the mechanisms of tumorigenesis and provide diagnostic, prognostic, and predictive information of high clinical relevance. Among the different tumor-associated epigenetic signatures, 5 methyl-cytosine (5mC) and 5-hydroxymethylcytosine (5hmC) are the two most well-characterized DNA methylation alterations linked to cancer pathogenesis. 5hmC has a tissue-specific distribution and its abundance is subjected to changes in tumor DNA, making it a promising biomarker.

View Article and Find Full Text PDF

DNA methylation is a stable epigenetic mark that plays a crucial role in plant life processes. However, the specific functions of DNA methylation in grape berry development remain largely unknown. In this study, we performed whole-genome bisulfite sequencing on 'Kyoho' grape and its early-ripening bud mutant 'Fengzao' at different developmental stages.

View Article and Find Full Text PDF

Investigating POU3F4 in cancer: Expression patterns, prognostic implications, and functional roles in tumor immunity.

Heliyon

January 2025

Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, 224002, China.

Research has demonstrated that POU3F4 is integral to various cancers, in addition to its significance in inner ear development, pancreatic differentiation, as well as neural stem cell differentiation. Nevertheless, comprehensive pan-cancer analyses focusing on POU3F4 remain limited. This study aims to assess the prognostic value of POU3F4 in thirty-three cancers and explore its immune-related functions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!