Background: The application of calcium phosphate (CaP)-based bone substitutes plays an important role in periodontal regeneration, implant dentistry and alveolar bone reconstruction. The incorporation of strontium (Sr) into CaP-based bone substitutes appears to improve their biological properties, but the reported in vivo bone repair performance is inconsistent among studies. Herein, we conducted a systematic review and meta-analysis to investigate the in vivo performance of Sr-doped materials.
Methods: We searched PubMed, EMBASE (via OVIDSP), and reference lists to identify relevant animal studies. The search, study selection, and data extraction were performed independently by two investigators. Meta-analyses and sub-group analyses were conducted using Revman version 5.4.1. The heterogeneity between studies were assessed by I. Publication bias was investigated through a funnel plot.
Results: Thirty-five studies were finally enrolled, of which 16 articles that reported on new bone formation (NBF) were included in the meta-analysis, covering 31 comparisons and 445 defects. The overall effect for NBF was 2.25 (95% CI 1.61-2.90, p < 0.00001, I = 80%). Eight comparisons from 6 studies reported the outcomes of bone volume/tissue volume (BV/TV), with an overall effect of 1.42 (95% CI 0.65-2.18, p = 0.0003, I = 75%). Fourteen comparisons reported on the material remaining (RM), with the overall effect being -2.26 (95% CI - 4.02 to - 0.50, p = 0.0009, I = 86%).
Conclusions: Our study revealed that Sr-doped calcium phosphate bone substitutes improved in vivo performance of bone repair. However, more studies are also recommended to further verify this conclusion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8905839 | PMC |
http://dx.doi.org/10.1186/s12903-022-02092-7 | DOI Listing |
Discov Oncol
December 2024
Department of General Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
Radioligand therapy is a targeted cancer treatment modality in which radioisotopes are utilized in the delivery of radiation at targeted cancer cells, with the goal of sparing normal cells. Prostate cancer is a well-known radiosensitive disease, historically treated with radioisotopes such as Strontium-89, Samarium-153, and Radium-223 for palliation of bone metastases. Recently, prostate specific membrane antigen (PSMA) has recently been employed as a radioligand target due to its unique properties of high expression on the surface of prostate cancer cells, limited expression in normal tissue, function as an internalizing cell surface receptor, and increased expression with androgen deprivation therapy.
View Article and Find Full Text PDFInorg Chem
December 2024
Facultad de Farmacia, Departamento de Química y Bioquímica, Urbanización Montepríncipe, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, E-28668 Madrid, Spain.
Lanthanum strontium ferrite (LaSrAgFeO = 0; LSFO) and its silver-doped derivative (LaSrAgFeO = 0.05; LASFO) are synthesized using mild conditions by a sol-gel method. Both oxides present a perovskite-like structure with orthorhombic symmetry due to octahedral tilting; thus, the incorporation of silver in the A-site does not significantly modify the perovskite structure.
View Article and Find Full Text PDFMolecules
November 2024
Department of Inorganic Chemistry, Faculty of Materials Science and Ceramics, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland.
Perovskite materials in the CaTiO-SrTiO system doped with different amounts of iron (1, 2 and 5 mol.%) and various Ca/Sr ratios were prepared by the modified citrate method. Additionally, the materials with 0.
View Article and Find Full Text PDFJ Trace Elem Med Biol
November 2024
Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen 91058, Germany. Electronic address:
Introduction: The incorporation of trace elements such as strontium (Sr) and copper (Cu) in the composition of mesoporous bioactive glass (MBG) is widely known to enhance its biological functionality for bone tissue regeneration METHODS: Two MBG powders with the composition 80SiO-11CaO-5PO-xCuO/SrO, one doped with 4 mol.% of CuO, the second with 4 mol.% of SrO were blended in the weight ratios of Cu-MBG: Sr-MBG; 100:0, 70: 30, 50: 50, 30: 70 and 0:100 aiming at minimizing Cu to minimize the cytotoxicity of Cu while preserving its antimicrobial activity.
View Article and Find Full Text PDFActa Biomater
December 2024
Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117 Berlin, Germany; Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin 13353, Germany; Berlin-Brandenburg School for Regenerative Therapies at Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin 13353, Germany. Electronic address:
Regeneration of large bone defects remains a clinical challenge until today. While existing biomaterials are predominantly addressing bone healing via direct, intramembranous ossification (IO), bone tissue formation via a cartilage phase, so-called endochondral ossification (EO) has been shown to be a promising alternative strategy. However, pure biomaterial approaches for EO induction are sparse and the knowledge how material components can have bioactive contribution to the required cartilage formation is limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!