Background: Advanced type 2 diabetes mellitus (T2DM) accelerates vascular smooth muscle cell (VSMC) dysfunction which contributes to the development of vasculopathy, associated with the highest degree of morbidity of T2DM. Lysine acetylation, a post-translational modification (PTM), has been associated with metabolic diseases and its complications. Whether levels of global lysine acetylation are altered in vasculature from advanced T2DM remains undetermined. We hypothesized that VSMC undergoes dysregulation in advanced T2DM which is associated with vascular hyperacetylation.
Methods: Aged male Goto Kakizaki (GK) rats, a non-obese murine model of T2DM, and age-matched male Wistar rats (control group) were used in this study. Thoracic aortas were isolated and examined for measurement of global levels of lysine acetylation, and vascular reactivity studies were conducted using a wire myograph. Direct arterial blood pressure was assessed by carotid catheterization. Cultured human VSMCs were used to investigate whether lysine acetylation participates in high glucose-induced reactive oxygen species (ROS), a crucial factor triggering diabetic vascular dysfunction.
Results: The GK rats exhibited marked glucose intolerance as well as insulin resistance. Cardiovascular complications in GK rats were confirmed by elevated arterial blood pressure and reduced VSMC-dependent vasorelaxation. These complications were correlated with high levels of vascular global lysine acetylation. Human VSMC cultures incubated under high glucose conditions displayed elevated ROS levels and increased global lysine acetylation. Inhibition of hyperacetylation by garcinol, a lysine acetyltransferase and p300/CBP association factor (PCAF) inhibitor, reduced high glucose-induced ROS production in VSMC.
Conclusion: This study provides evidence that vascular hyperacetylation is associated with VSMC dysfunction in advanced T2DM. Understanding lysine acetylation regulation in blood vessels from diabetics may provide insight into the mechanisms of diabetic vascular dysfunction, and opportunities for novel therapeutic approaches to treat diabetic vascular complications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8902773 | PMC |
http://dx.doi.org/10.1186/s10020-022-00441-4 | DOI Listing |
Cell Death Dis
January 2025
NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, 110004, China.
Metabolic rewiring underlies effective macrophages defense to respond disease microenvironment. However, the underlying mechanisms driving metabolic rewiring to enhance macrophage effector functions remain unclear. Here, we demonstrated that the metabolic reprogramming in inflammatory macrophages depended on the acetylation of CLYBL, a citramalyl-CoA lyase, at lysine 154 (K154), and blocking CLYBL-K154 acetylation restricted the release of pro-inflammatory factors.
View Article and Find Full Text PDFCancer Lett
January 2025
Advanced Medical Research Institute, Qilu College of Medicine, Shandong University, Jinan, 250012, China. Electronic address:
Dysregulated lipid metabolism is linked to tumor progression. In this study, we identified Niemann-Pick C1-like 1 (NPC1L1) as a downstream effector of PKM2. In breast cancer cells, PKM2 knockout (KO) enhanced NPC1L1 expression while downregulating peroxisome proliferator-activated receptor α (PPARα) signaling pathway.
View Article and Find Full Text PDFPathogens
January 2025
Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
The papillomavirus E2 protein regulates the transcription, replication, and segregation of viral episomes within the host cell. A multitude of post-translational modifications have been identified which control E2 functions. A highly conserved di-lysine motif within the transactivation domain (TAD) has been shown to regulate the normal functions of the E2 proteins of BPV-1, SfPV1, HPV-16, and HPV-31.
View Article and Find Full Text PDFMolecules
January 2025
Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy.
Epigenetic abnormalities play a critical role in colon carcinogenesis, making them a promising target for therapeutic interventions. In this study, we demonstrated that curcumin reduces colon cancer cell survival and that a decrease in lysine methylation was involved in such an effect. This correlated with the downregulation of methyltransferases EZH2, MLL1, and G9a, in both wild-type p53 (wtp53) HCT116 cells and mutant p53 (mutp53) SW480 cells, as well as SET7/9 specifically in wtp53 HCT116 cells.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA.
Glioblastoma (GBM), the most prevalent primary malignant brain tumor, remains challenging to treat due to extensive inter- and intra-tumor heterogeneity. This variability demands combination treatments to improve therapeutic outcomes. A significant obstacle in treating GBM is the expression of O-methylguanine-DNA methyltransferase, a DNA repair enzyme that reduces the efficacy of the standard alkylating agent, temozolomide, in about 50% of patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!