Zinc (Zn) deficiency in soil is a serious constraint affecting the yield and nutritional quality of wheat and, in turn, human health. Zn fertilization for enhancing its density in grains is a prominent technological solution for the problem. Accordingly, the present study (pot experiment) was undertaken to (i) assess the impacts of different Zn fertilization technologies on yield, concentrations of Zn, phytic acid (PA), iron (Fe) and also the bioavailability of Zn in grains and (ii) determine the optimised Zn fertilization technology that balances all the above attributes. To achieve this, six Zn fertilization technologies, namely, soil fertilization alone, combined soil and foliar fertilization at maximum tillering, jointing, flowering, dough stages and also foliar fertilization alone were tested and compared with control (no Zn) in forty different soil series representing two distinct soil orders, and . Results showed that relative effectiveness of different Zn fertilization technologies varied for the crop attributes studied. Soil + foliar fertilization was superior in increasing grain yield (10-13% over the control). Moreover, for an optimum balance among all the tested attributes including bioavailability of Zn to human, foliar Zn fertilization at later crop growth stage (i.e. dough) combined with soil fertilization was the best. It was found that biofortified wheat grains obtained through Zn fertilization, on an average, could supply about 1.5 times more bioavailable Zn than the normal grains. Therefore, the outcomes of this study can provide a guideline for sustainable and quality wheat production, which will help address the malnutrition challenge.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09593330.2022.2050818DOI Listing

Publication Analysis

Top Keywords

fertilization
13
fertilization technologies
12
foliar fertilization
12
fertilization technology
8
quality wheat
8
soil fertilization
8
combined soil
8
soil
6
optimizing zinc
4
zinc fertilization
4

Similar Publications

Lycium barbarum is an important economic crop in the arid region of Northwest China, and the regulation of irrigation and fertilisation is an important way to improve the quality and yield of Lycium barbarum. To explore the effects of water-fertiliser coupling on photosynthesis, quality and yield of Lycium barbarum under irrigation methods based on predicted crop evapotranspiration (ET), ET was calculated via reference evapotranspiration (ET) predicted on the basis of public weather forecasts, and the irrigation water volume was determined as a proportion of this ET. A field experiment was conducted via a completely randomised experimental design with five irrigation water volumes (W0 (100% ET), W1 (90% ET), W2 (80% ET), W3 (70% ET) and W4 (65% ET)) and three fertiliser application rates (high fertiliser (FH), medium fertiliser (FM) and low fertiliser (FL)).

View Article and Find Full Text PDF

This study aimed to develop and validate a predictive model for failure to collect oocytes in the Patient-Oriented Strategies Encompassing Individualized Oocyte Number (POSEIDON) Groups 3 and 4 during their first in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) cycle. A retrospective analysis was conducted on patients in POSEIDON Groups 3 and 4 who underwent their first IVF/ICSI cycle at our center from January 2016 to December 2023. A total of 2,373 patients were randomly assigned to the training or validation cohort at a ratio of 6:4.

View Article and Find Full Text PDF

Hotspots of nitrogen losses from anthropogenic sources in the Huang-Huai-Hai Basin, China.

Environ Pollut

December 2024

College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, State Key Laboratory of Nutrient Use and Management, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing 100193, China. Electronic address:

Poor management of nitrogen (N) can lead to serious environmental problems, such as air and water pollution. The accurate identification of priority control areas and emission sources is critical for making effective decisions regarding sustainable N management. This study aimed to identify hotspots for N losses and quantitatively analyze the relative contributions of different emission sources in the Huang-Huai-Hai Basin at the county scale.

View Article and Find Full Text PDF

Background: The gonadotropin-releasing hormone antagonist (GnRH-ant) protocol is associated with few oocytes retrieved, few mature oocytes and poor endometrial receptivity. Omission of GnRH-ants on trigger day seems unlikely to induce preovulation and may improve outcomes in the GnRH-ant protocol. This study aimed to systematically evaluate the effects of GnRH-ant cessation on trigger day on in vitro fertilisation outcomes following the GnRH-ant protocol.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!