Plasmonic metallic nanoparticles are commonly used in (bio-)sensing applications because their localized surface plasmon resonance is highly sensitive to changes in the environment. Although optical detection of scattered light from single particles provides a straightforward means of detection, the two-photon luminescence (TPL) of single gold nanorods (GNRs) has the potential to increase the sensitivity due to the large anti-Stokes shift and the non-linear excitation mechanism. However, two-photon microscopy and spectroscopy are restricted in bandwidth and have been limited by the thermal stability of GNRs. Here, we used a scanning multi-focal microscope to simultaneously measure the two-photon excitation spectra of hundreds of individual GNRs with sub-nanometer accuracy. By keeping the excitation power under the melting threshold, we show that GNRs were stable in intensity and spectrum for more than 30 min, demonstrating the absence of thermal reshaping. Spectra featured a signal-to-noise ratio of >10 and a plasmon peak width of typically 30 nm. Changes in the refractive index of the medium of less than 0.04, corresponding to a change in surface plasmon resonance of 8 nm, could be readily measured and over longer periods. We used this enhanced spectral sensitivity to measure the presence of neutravidin, exploring the potential of TPL spectroscopy of single GNRs for enhanced plasmonic sensing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0073208 | DOI Listing |
ACS Nano
January 2025
Center for Terahertz Waves and School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China.
The physical picture for photocurrent injection and coherent control in intrinsic graphene under two-color laser excitation remains obscure. Previously, photocurrent injection of intrinsic graphene was attributed to the quantum interference between two electronic transition pathways of single-photon and two-photon absorptions as well as layer-to-layer coupling. Here, we show that quantum interference between stimulated electronic Raman scattering and single-photon absorption plays a very important role in contributing to the total photocurrent, while interlayer coupling does not sufficiently affect the photocurrent injection, which is in contrast to the previous interpretation of the experimental results on photocurrent injection and coherent control.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, K.S.M Devaswom Board College, Sasthamcotta, Kollam, India.
Transition metal based optical limiting materials have garnered significant attention due their crucial role in protecting sensitive optical system from high intense laser damage. Transition metal molybdates exhibits nonlinear optical (NLO) response, which attenuate highly intense light by transmitting light of desired intensity. Herein we report Silver molybdate (AgMoO) nanostructures doped with erbium (Er) ions were successfully synthesized by simple co-precipitation technique.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Max Planck Institute for Medical Research, Jahnstr. 29, Heidelberg 69120, Germany.
Orange carotenoid protein (OCP) is a photoactive protein that mediates photoprotection in cyanobacteria. OCP binds different ketocarotenoid chromophores such as echinenone (ECN), 3'- hydroxyechinenone (hECN), and canthaxanthin (CAN). In the dark, OCP is in an inactive orange form known as OCP; upon illumination, a red active state is formed, referred to as OCP, that can interact with the phycobilisome.
View Article and Find Full Text PDFInorg Chem
January 2025
Univ. Grenoble Alpes, CNRS, CEA, IRIG, LCBM (UMR 5249), Grenoble F-38000, France.
Lanthanide(III) complexes with two-photon absorbing antennas are attractive for microscopy imaging of live cells because they can be excited in the NIR. We describe the synthesis and luminescence and imaging properties of two Eu complexes, and , with (-carbazolyl)-aryl-alkynyl-picolinamide and (-carbazolyl)-aryl-picolinamide antennas, respectively, conjugated to the TAT cell-penetrating peptides. Contrary to what was previously observed with related Eu complexes with carbazole-based antennas in a mixture of water and organic solvents, these two complexes show very low emission quantum yield (Φ < 0.
View Article and Find Full Text PDFNanoscale
January 2025
School of Chemistry and Chemical Engineering, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, and Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, P.R. China.
Currently, the study of cuproptosis focuses on the Cu-induced morphology changes in mitochondria (Mito), and the observation of the effect of endoplasmic reticulum (ER)-related Cu content on cuproptosis is relatively lacking. Herein, we have developed a hydroxyflavone (HF)-based NIR excited two-photon fluorescent probe, BHCO, that exhibits specific recognition of Cu with high resolution. BHCO-Cu (Cu2BC) can lead to DLAT protein aggregation, triggering cuproptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!