A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Real-space density kernel method for Kohn-Sham density functional theory calculations at high temperature. | LitMetric

Kohn-Sham density functional theory calculations using conventional diagonalization based methods become increasingly expensive as temperature increases due to the need to compute increasing numbers of partially occupied states. We present a density matrix based method for Kohn-Sham calculations at high temperatures that eliminates the need for diagonalization entirely, thus reducing the cost of such calculations significantly. Specifically, we develop real-space expressions for the electron density, electronic free energy, Hellmann-Feynman forces, and Hellmann-Feynman stress tensor in terms of an orthonormal auxiliary orbital basis and its density kernel transform, the density kernel being the matrix representation of the density operator in the auxiliary basis. Using Chebyshev filtering to generate the auxiliary basis, we next develop an approach akin to Clenshaw-Curtis spectral quadrature to calculate the individual columns of the density kernel based on the Fermi operator expansion in Chebyshev polynomials and employ a similar approach to evaluate band structure and entropic energy components. We implement the proposed formulation in the SPARC electronic structure code, using which we show systematic convergence of the aforementioned quantities to exact diagonalization results, and obtain significant speedups relative to conventional diagonalization based methods. Finally, we employ the new method to compute the self-diffusion coefficient and viscosity of aluminum at 116 045 K from Kohn-Sham quantum molecular dynamics, where we find agreement with previous more approximate orbital-free density functional methods.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0082523DOI Listing

Publication Analysis

Top Keywords

density kernel
16
density functional
12
density
9
method kohn-sham
8
kohn-sham density
8
functional theory
8
theory calculations
8
calculations high
8
conventional diagonalization
8
diagonalization based
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!