A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Large-scale assessment of organic contaminant emissions from chemical and pharmaceutical manufacturing into Swiss surface waters. | LitMetric

This study presents a nation-wide assessment of the influence of chemical and pharmaceutical manufacturing (CPM) wastewaters on synthetic organic contaminant (SOC) emissions to Swiss surface waters. Geographic Information System (GIS) based analysis of the presence of CPM in wastewater treatment plant (WWTP) catchments revealed wide distribution of this industrial sector across Switzerland, suggesting that one-third of the 718 Swiss WWTPs may be influenced by CPM wastewaters. To reflect the diversity of this type of wastewaters, we investigated the effluents of 11 WWTPs of diverse sizes and technologies, which treated 0-100% wastewater from a variety of CPM activities. In an extensive sampling campaign, we collected temporally high resolved (i.e., daily) samples for 2-3 months to capture the dynamics of CPM discharges. The > 850 samples were then measured with liquid chromatography high-resolution mass spectrometry (LC-HRMS). Non-target characterization of the LC-HRMS time series datasets revealed that CPM wastewaters left a highly variable and site-specific signature in the effluents of the WWTPs. Particularly, compared to WWTPs with purely domestic input, a larger variety of substances (up to 15 times more compounds) with higher maximum concentrations (1-2 orders of magnitude) and more uncommon substances were found in CPM-influenced effluents. Moreover, in the latter, highly fluctuating discharges often contributed to a substantial fraction of the overall emissions. The largely varying characteristics of CPM discharges between different facilities were primarily related to the type of activities at the industries (i.e., production versus processing of chemicals) as well as to the pre-treatment and storage of CPM wastewaters. Eventually, for one WWTP, LC-HRMS time series were correlated with ecotoxicity time series obtained from bioassays and major toxic components could be identified. Overall, in view of their potential relevance to water quality, a strong focus on SOC discharges from CPM is essential, including the design of situation-specific monitoring, as well as risk assessment and mitigation strategies that consider the variability of industrial emissions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2022.118221DOI Listing

Publication Analysis

Top Keywords

cpm wastewaters
16
time series
12
cpm
9
organic contaminant
8
chemical pharmaceutical
8
pharmaceutical manufacturing
8
swiss surface
8
surface waters
8
effluents wwtps
8
cpm discharges
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!