Recent evidence from laboratory and epidemiologic studies has shed a different light on selenium health effects and its recommended range of environmental exposure, compared with earlier research. Specifically, epidemiologic studies in Western populations have shown adverse effects of selenium exposure at low levels, sometimes below or slightly above selenium intakes needed to maximize selenoprotein expression and activity. In addition, three recent lines of evidence in molecular and biochemical studies suggest some potential drawbacks associated with selenoprotein maximization: 1) the possibility that selenoprotein upregulation is a compensatory response to oxidative challenge, induced by selenium itself or other oxidants; 2) the capacity of selenoproteins to trigger tumor growth in some circumstances; and 3) the deleterious metabolic effects of selenoproteins and particularly of selenoprotein P. The last observation provides a toxicological basis to explain why in humans selenium intake levels as low as 60 μg/day, still in the range of selenium exposure upregulating selenoprotein expression, might start to increase risk of type 2 diabetes. Overall, these new pieces of evidence from the literature call into question the purported benefit of selenoprotein maximization, and indicate the need to reassess selenium dietary reference values and upper intake level. This reassessment should clarify which range of selenoprotein upregulation follows restoration of adequate selenium availability and which range is driven by a compensatory response to selenium toxicity and oxidative stress.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2022.113092DOI Listing

Publication Analysis

Top Keywords

selenium exposure
12
selenoprotein maximization
12
selenium
9
selenoprotein
8
epidemiologic studies
8
selenoprotein expression
8
selenoprotein upregulation
8
compensatory response
8
safety selenium
4
exposure
4

Similar Publications

Quantification of heavy metal exposure in a British population cohort links total mercury levels in plasma with skin tissue-specific changes in mitochondrial-related gene expression.

Sci Total Environ

January 2025

Department of Twin Research and Genetic Epidemiology, King's College London, 3-4th Floor South Wing Block D, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH, UK. Electronic address:

Heavy metals in our direct environment have profound effects on human health and while some are essential for life, others can be toxic. In vivo studies often focus on clinical features caused by overexposure to, or by deprivation of a heavy metal. However, to understand the cellular impact of heavy metals on health, studies in healthy volunteers before symptom onset are needed.

View Article and Find Full Text PDF

Dynamic Covalent Sulfur-Selenium Rich Polymers via Inverse Vulcanization for High Refractive Index, High Transmittance, and UV Shielding Materials.

Macromol Rapid Commun

January 2025

College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Material, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.

Recent advancements in inverse vulcanization have led to the development of sulfur-rich polymers with diverse applications. However, progress is constrained by the harsh high-temperature reaction conditions, limited applicability, and the generation of hazardous HS gas. This study presents an induced IV method utilizing selenium octanoic acid, yielding sulfur-selenium rich polymers with full atom economy, even at a low-temperatures of 100-120 °C.

View Article and Find Full Text PDF

There is an important concern about the potential health and environmental risks that may develop due to exposure to copper oxide nanoparticles (CuO-NPs). Selenium is an essential trace element. It supports the expression of a variety of selenoproteins.

View Article and Find Full Text PDF

High-selenium exposure is associated with modulation of serum lipid metabolism.

Ecotoxicol Environ Saf

January 2025

Hubei Selenium and Human Health Institute, the Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, China; Hubei Provincial Key Lab of Selenium Resources and Bioapplications, Enshi 445000, China. Electronic address:

At present, there is no consensus on the relationship between selenium (Se) exposure and human serum lipid metabolism. The etiological role of high-Se exposure in lipid markers, dyslipidemia, and nonalcoholic fatty liver (NAFLD) remains unclear. We used serum untargeted metabolomics analysis to evaluate whether high-Se exposure is cross-sectionally associated with lipid metabolism in adults from high-Se exposure area (n = 112) and control area (n = 101) in Hubei Province, China.

View Article and Find Full Text PDF

Background: Epidemiological research on the association between heavy metals and congestive heart failure (CHF) in individuals with abnormal glucose metabolism is scarce. The study addresses this research gap by examining the link between exposure to heavy metals and the odds of CHF in a population with dysregulated glucose metabolism.

Method: This cross-sectional study includes 7326 patients with diabetes and prediabetes from the National Health and Nutrition Examination Survey from 2011 to 2018.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!