The cis-dihydroxylation of arenes by Rieske dearomatizing dioxygenases (RDDs) represents a powerful tool for the production of chiral precursors in organic synthesis. Here, the substrate specificity of the RDD benzoate dioxygenase (BZDO) in Ralstonia eutropha B9 whole cells was explored using quantitative 1H nuclear magnetic resonance spectroscopy (q1H-NMR). The specific activity, specific carbon uptake, and regioselectivity of the dihydroxylation reaction were evaluated in resting cell cultures for a panel of 17 monosubstituted benzoates. Two new substrates of this dioxygenase system were identified (2-methyl- and 3-methoxybenzoic acid) and the corresponding cis-diol metabolites were characterized. Higher activities were observed for benzoates with smaller substituents, predominantly at the 3-position. Elevated activities were also observed in substrates bearing greater partial charge at the C-2 position of the benzoate ring. The regioselectivity of the reaction was directly measured using q1H-NMR and found to have positive correlation with increasing substituent size. These results widen the pool of cis-diol metabolites available for synthetic applications and offer a window into the substrate traits that govern specificity for BZDO.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9142194 | PMC |
http://dx.doi.org/10.1093/jimb/kuac006 | DOI Listing |
Int J Biol Macromol
January 2025
Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India. Electronic address:
The SUMO fusion technology has immensely contributed to the soluble production of therapeutics and other recombinant proteins in E. coli. The structure-based functionality of SUMO protease has remained the primary determinant for choosing SUMO as a solubility enhancer tag.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada.
ClpXP is a two-component mitochondrial matrix protease. The caseinolytic mitochondrial matrix peptidase chaperone subunit X (ClpX) recognizes and translocates protein substrates into the degradation chamber of the caseinolytic protease P (ClpP) for proteolysis. ClpXP degrades damaged respiratory chain proteins and is necessary for cancer cell survival.
View Article and Find Full Text PDFBiochem J
January 2025
The Sun Yat-Sen University, Guangzhou, China.
The N6-methyladenine (6mA) modification is an essential epigenetic marker and plays a crucial role in processes, such as DNA repair, replication, gene expression regulation, etc. YerA from Bacillus subtilis is considered a novel class of enzymes capable of catalyzing the deamination of 6mA to produce hypoxanthine. Despite the significance of this type of enzymes in bacterial self-defense systems and potential applications as a gene-editing tool, the substrate specificity, the catalytic mechanism and the physiological function of YerA are currently unclear due to the lack of structural information.
View Article and Find Full Text PDFThe detection of lead ions (Pb) is crucial due to its harmful effects on health and the environment. In this article, what we believe to be a novel dielectric-metal hybrid structure localized surface plasmon resonance (LSPR) sensor for ultra-trace detection of Pb is proposed, featuring a zinc sulfide layer, silver nanodisks (Ag-disks), and graphene oxide (GO) covering the Ag-disks. The sensor works by detecting the variation of gold nanoparticles (AuNPs) on its surface when Pb cleaves a substrate strand linked to a DNAzyme, causing the AuNPs modified on the substrate strand to disperse.
View Article and Find Full Text PDFCommun Biol
January 2025
Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.
P4-ATPases, a subfamily of the P-type ATPase superfamily, play a crucial role in translocating membrane lipids from the exoplasmic/luminal leaflet to the cytoplasmic leaflet. This process generates and regulates transbilayer lipid asymmetry. These enzymes are conserved across all eukaryotes, and the human genome encodes 14 distinct P4-ATPases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!