Targeted Temperature Management: A Program Evaluation.

AACN Adv Crit Care

Elizabeth Hundt is Assistant Professor of Nursing, School of Nursing, University of Virginia, Charlottesville, Virginia.

Published: March 2022

In the United States, more than 350 000 cardiac arrests occur annually. The survival rate after an out-of-hospital cardiac arrest remains low. The majority of patients who have return of spontaneous circulation will die of complications of hypoxic-ischemic brain injury. Targeted temperature management is the only recommended neuroprotective measure for those who do not regain consciousness after return of spontaneous circulation. Despite current practices, a review of the literature revealed that evidence on the ideal time to achieve target temperature after return of spontaneous circulation remains equivocal. A program evaluation of a targeted temperature management program at an academic center was performed; the focus was on timing components of targeted temperature management. The program evaluation revealed that nurse-driven, evidence-based protocols can lead to optimal patient outcomes in this low-frequency, high-impact therapy.

Download full-text PDF

Source
http://dx.doi.org/10.4037/aacnacc2022398DOI Listing

Publication Analysis

Top Keywords

targeted temperature
16
temperature management
16
management program
12
program evaluation
12
return spontaneous
12
spontaneous circulation
12
targeted
4
management
4
program
4
evaluation united
4

Similar Publications

Pharmaceutical giants (e.g., Ashland, Bausch & Lomb, Johnson & Johnson, Medtronic, Neurelis, etc.

View Article and Find Full Text PDF

Facile Design of Highly Stretchable and Conductive Crumpled Graphene/NiS Films for Multifunctional Applications.

Small Methods

January 2025

Fujian Provincial Key Laboratory of Functional Marine Sensing Materials, College of Material and Chemical Engineering, Minjiang University, Fuzhou, 350108, P. R. China.

The cost-effective and scalable synthesis and patterning of soft nanomaterial composites with improved electrical conductivity and mechanical stretchability remains challenging in wearable devices. This work reports a scalable, low-cost fabrication approach to directly create and pattern crumpled porous graphene/NiS nanocomposites with high mechanical stretchability and electrical conductivity through laser irradiation combined with electrodeposition and a pre-strain strategy. With modulated mechanical stretchability and electrical conductivity, the crumpled graphene/NiS nanocomposite can be readily patterned into target geometries for application in a standalone stretchable sensing platform.

View Article and Find Full Text PDF

A smart responsive NIR-operated chitosan-based nanoswitch to induce cascade immunogenic tumor ferroptosis via cytokine storm.

Carbohydr Polym

March 2025

College of Biological Science and Medical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, PR China. Electronic address:

In this work we present a near-infrared (NIR)-operated nanoswitch based on chitosan nanoparticles (EpCAM-CS-co-PNVCL@IR780/IMQ NPs) that induces cascade immunogenic tumor ferroptosis via cytokine storm. The formulation was prepared by loading a photosensitiser (IR780) and an immunotherapeutic drug (imiquimod; IMQ) into temperature- and pH-responsive chitosan-based NPs functionalized with tumor-targeting aptamers. The EpCAM aptamer can chaperone the NPs selectively into cancer cells, and allow them to enter the cell nucleus.

View Article and Find Full Text PDF

The rising pandemic of obesity has received significant attention. Yet, more safe and effective targeted strategies must be used to mitigate its impact on individual health and the global disease burden. While the health benefits of resistant starch (RS) are well-documented, the role of RT-90 (a phosphate-modified tapioca RS containing 90.

View Article and Find Full Text PDF

A novel photoelectrochemical biosensor for sensitive detection of nucleic acids based on recombinase polymerase amplification and 3D-array titania nanorods.

Int J Biol Macromol

January 2025

NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou 571199, PR China. Electronic address:

Nucleic acids detection is essential for diagnosing pathogens; however, traditional methods usually face challenges such as low sensitivity, lengthy reaction times, and strict temperature requirements. This study develops a novel photoelectrochemical (PEC) biosensor that integrates recombinase polymerase amplification (RPA) with a 3D-array titania (TiO) nanorods nanorod electrode, addressing the challenge of achieving sensitive detection of RPA-amplified nucleic acids products, thereby enabling earlier and more reliable pathogen detection. The biosensor utilizes a triple-binding mode involving FITC antibodies, target nucleic acids, and an HRP-streptavidin sandwich structure, significantly improving the bio-functionalization of the electrode surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!