Alchemical Free Energy Methods Applied to Complexes of the First Bromodomain of BRD4.

J Chem Inf Model

School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.

Published: March 2022

Accurate and rapid predictions of the binding affinity of a compound to a target are one of the ultimate goals of computer aided drug design. Alchemical approaches to free energy estimations follow the path from an initial state of the system to the final state through alchemical changes of the energy function during a molecular dynamics simulation. Herein, we explore the accuracy and efficiency of two such techniques: relative free energy perturbation (FEP) and multisite lambda dynamics (MSλD). These are applied to a series of inhibitors for the bromodomain-containing protein 4 (BRD4). We demonstrate a procedure for obtaining accurate relative binding free energies using MSλD when dealing with a change in the net charge of the ligand. This resulted in an impressive comparison with experiment, with an average difference of 0.4 ± 0.4 kcal mol. In a benchmarking study for the relative FEP calculations, we found that using 20 lambda windows with 0.5 ns of equilibration and 1 ns of data collection for each window gave the optimal compromise between accuracy and speed. Overall, relative FEP and MSλD predicted binding free energies with comparable accuracy, an average of 0.6 kcal mol for each method. However, MSλD makes predictions for a larger molecular space over a much shorter time scale than relative FEP, with MSλD requiring a factor of 18 times less simulation time for the entire molecule space.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9098113PMC
http://dx.doi.org/10.1021/acs.jcim.1c01229DOI Listing

Publication Analysis

Top Keywords

free energy
12
relative fep
12
binding free
8
free energies
8
kcal mol
8
fep msλd
8
relative
5
msλd
5
alchemical free
4
energy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!