The human neocortex has a cytoarchitecture composed of six layers with an intrinsic organization that relates to afferent and efferent pathways for a high functional specialization. Various histological, neurochemical, and connectional techniques have been used to study these cortical layers. Here, we explore the additional possibilities of swift ion beam and synchrotron radiation techniques to distinguish cellular layers based on the elemental distributions and areal density pattern in the human neocortex. Temporal cortex samples were obtained from two neurologically normal adult men (postmortem interval: 6-12 h). A cortical area of 500 × 500 μm was scanned by a 3 MeV proton beam for elemental composition and areal density measurements using particle induced x-ray emission (PIXE) and scanning transmission ion microscopy (STIM), respectively. Zinc showed higher values in cortical layers II and V, which needs a critical discussion. Furthermore, the areal density decreased in regions with a higher density of pyramidal neurons in layers III and V. Scanning transmission X-ray microscopy (STXM) revealed the cellular density with higher lateral resolution than STIM, but not enough to distinguish each cortical lamination border. Our data describe the practical results of these approaches employing both X-ray and ion-beam based techniques for the human cerebral cortex and its heterogeneous layers. These results add to the potential approaches and knowledge of the human neocortical gray matter in normal tissue to develop improvements and address further studies on pathological conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12011-022-03182-x | DOI Listing |
Sci Rep
December 2024
Department of Neurosurgery, Baylor College of Medicine, Houston, USA.
Alteration of responses to salient stimuli occurs in a wide range of brain disorders and may be rooted in pathophysiological brain state dynamics. Specifically, tonic and phasic modes of activity in the reticular activating system (RAS) influence, and are influenced by, salient stimuli, respectively. The RAS influences the spectral characteristics of activity in the neocortex, shifting the balance between low- and high-frequency fluctuations.
View Article and Find Full Text PDFGlia
December 2024
Faculty of Medicine, Experimental Epilepsy Research, Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany.
Focal cortical dysplasias (FCDs) are local malformations of the human neocortex and a leading cause of intractable epilepsy. FCDs are classified into different subtypes including FCD IIa and IIb, characterized by a blurred gray-white matter boundary or a transmantle sign indicating abnormal white matter myelination. Recently, we have shown that myelination is also compromised in the gray matter of FCD IIa of the temporal lobe.
View Article and Find Full Text PDFNeocortex expansion has a concerted relationship with folding, underlying evolution of human cognitive functions. However, molecular mechanisms underlying this significant evolutionary process remains unknown. Here, using tree shrew as an outgroup of primates, we identify a new regulator which acquired its expression before the emergence of primates.
View Article and Find Full Text PDFUnlabelled: The rich diversity of synapses facilitates the capacity of neural circuits to transmit, process and store information. Here, we used multiplex super-resolution proteometric imaging through array tomography to define features of single synapses in the adult mouse neocortex. We find that glutamatergic synapses cluster into subclasses that parallel the distinct biochemical and functional categories of receptor subunits: GluA1/4, GluA2/3 and GluN1/GluN2B.
View Article and Find Full Text PDFCurr Biol
December 2024
University of Pennsylvania, Department of Psychology, Hamilton Walk, Philadelphia, PA 19104, USA. Electronic address:
The thalamus plays a crucial role in the development of the neocortex, with the pulvinar being particularly important for visual development due to its involvement in various functions that emerge early in infancy. The development of connections between the pulvinar and the cortex constrains its role in infant visual processing and the maturation of associated cortical networks. However, the extent to which adult-like pulvino-cortical pathways are present at birth remains largely unknown, limiting our understanding of how the thalamus may support early vision.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!