A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Concordance of Occupational Exposure Assessment between the Canadian Job-Exposure Matrix (CANJEM) and Expert Assessment of Jobs Held by Women. | LitMetric

Objectives: To compare the exposure data generated by using the Canadian job-exposure matrix (CANJEM) with data generated by expert assessment, for jobs held by women.

Methods: We selected 69 occupational agents that had been assessed by experts for each of 3403 jobs held by 998 women in a population-based case-control study of lung cancer. We then assessed the same agents among the same jobs by linking their occupation codes to CANJEM and thereby derived probability of exposure to each of the agents in each job. To create binary exposure variables, we dichotomized probability of exposure using two cutpoints: 25 and 50% (referred to as CANJEM-25% and CANJEM-50%). Using jobs as units of observation, we estimated the prevalence of exposure to each selected agent using CANJEM-25% and CANJEM-50%, and using expert assessment. Further, using expert assessment as the gold standard, for each agent, we estimated CANJEM's sensitivity, specificity, and kappa.

Results: CANJEM-based prevalence estimates correlated well with the prevalences assessed by the experts. When comparing CANJEM-based exposure estimates with expert-based exposure estimates, sensitivity, specificity, and kappa varied greatly among agents, and between CANJEM-25% and CANJEM-50% probability of exposure. With CANJEM-25%, the median sensitivity, specificity, and kappa values were 0.49, 0.99, and 0.46, respectively. Analogously, with CANJEM-50%, the corresponding values were 0.26, 1.00, and 0.35, respectively. For the following agents, we observed high concordance between CANJEM- and expert-based assessments (sensitivity ≥0.70 and specificity ≥0.99): fabric dust, cotton dust, synthetic fibres, cooking fumes, soldering fumes, calcium carbonate, and tin compounds. We present concordance estimates for each of 69 agents.

Conclusions: Concordance between CANJEM and expert assessment varied greatly by agents. Our results indicate which agents provide data that mimic best those obtained with expert assessment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9250288PMC
http://dx.doi.org/10.1093/annweh/wxac008DOI Listing

Publication Analysis

Top Keywords

expert assessment
24
jobs held
12
probability exposure
12
canjem-25% canjem-50%
12
sensitivity specificity
12
exposure
9
canadian job-exposure
8
job-exposure matrix
8
matrix canjem
8
canjem expert
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!