Structural Dynamics and Molecular Evolution of the SARS-CoV-2 Spike Protein.

mBio

Department of Microbiology and Immunology, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA.

Published: April 2022

AI Article Synopsis

  • The COVID-19 pandemic highlights the risks that novel coronaviruses pose to human health, particularly focusing on the spike protein, which is crucial for viral entry into host cells.
  • The interaction between the spike protein and the ACE2 receptor, along with host proteases, is essential for the efficient infection process and the neutralization of the virus by antibodies.
  • The study also examines mutations in the SARS-CoV-2 variants that affect viral entry, and discusses the Canyon Hypothesis to explain the evolutionary changes in these viral proteins amid ongoing transmission.

Article Abstract

The ongoing coronavirus disease 2019 (COVID-19) pandemic demonstrates the threat posed by novel coronaviruses to human health. Coronaviruses share a highly conserved cell entry mechanism mediated by the spike protein, the sole product of the gene. The structural dynamics by which the spike protein orchestrates infection illuminate how antibodies neutralize virions and how mutations contribute to viral fitness. Here, we review the process by which spike engages its proteinaceous receptor, angiotensin converting enzyme 2 (ACE2), and how host proteases prime and subsequently enable efficient membrane fusion between virions and target cells. We highlight mutations common among severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern and discuss implications for cell entry. Ultimately, we provide a model by which sarbecoviruses are activated for fusion competency and offer a framework for understanding the interplay between humoral immunity and the molecular evolution of the SARS-CoV-2 Spike. In particular, we emphasize the relevance of the Canyon Hypothesis (M. G. Rossmann, J Biol Chem 264:14587-14590, 1989) for understanding evolutionary trajectories of viral entry proteins during sustained intraspecies transmission of a novel viral pathogen.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9040836PMC
http://dx.doi.org/10.1128/mbio.02030-21DOI Listing

Publication Analysis

Top Keywords

spike protein
12
structural dynamics
8
molecular evolution
8
evolution sars-cov-2
8
sars-cov-2 spike
8
cell entry
8
spike
5
dynamics molecular
4
protein ongoing
4
ongoing coronavirus
4

Similar Publications

Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder characterized by cognitive decline. Despite extensive research, therapeutic options remain limited. Varenicline, an αβ nicotinic acetylcholine receptor agonist, shows promise in enhancing cognitive function.

View Article and Find Full Text PDF

Safety and immunogenicity of Ad26.COV2.S in adolescents: Phase 2 randomized clinical trial.

Hum Vaccin Immunother

December 2025

Crucell Integration, Janssen Research and Development, Beerse, Belgium.

We conducted a randomized, Phase 2 trial to assess the safety and humoral immunogenicity of reduced doses/dose volume of the standard dose of Ad26.COV2.S COVID-19 vaccine (5 × 10 viral particles [vp]) in healthy adolescents aged 12-17 years.

View Article and Find Full Text PDF

The Role of Structural Flexibility in Hydrocarbon-Stapled Peptides Designed to Block Viral Infection via Human ACE2 Mimicry.

Pept Sci (Hoboken)

November 2024

Department of Pediatrics, Section of Hematology/Oncology, The University of Chicago, Chicago, Illinois 60637, United States of America.

The COVID-19 pandemic drove a uniquely fervent pursuit to explore the potential of peptide, antibody, protein, and small-molecule based antiviral agents against severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2). The interaction between the SARS-CoV2 spike protein with the angiotensin-converting enzyme 2 (ACE2) receptor that mediates viral cell entry was a particularly interesting target given its well described protein-protein interaction (PPI). This PPI is mediated by an α-helical portion of ACE2 binding to the receptor binding domain (RBD) of the spike protein and thought to be susceptible to blockade through molecular mimicry.

View Article and Find Full Text PDF

In phage display technology, exogenous DNA is inserted into the phage genome, which generates a fusion protein with the phage coat protein, facilitates expression and promotes biological activity. This approach is primarily used to screen antibody libraries owing to its high library capacity and fast technical cycle; additionally, various types of genetically altered antibodies can be easily produced. In this study, we fused the pIII structural protein of the M13K07 phage with a scFv created by connecting the VH and VL domains of an anti-IFN-γ antibody.

View Article and Find Full Text PDF

Objective: The aim of this prospective cohort study is to analyse the humoral and cellular vaccine responses in paediatric heart transplant recipients (HTR, n = 12), and compare it with the response in healthy controls (HC, n = 14). All participants were 5-18 years old and vaccinated with mRNA vaccine against SARS-CoV-2 between December 2021 and May 2022.

Methods: The humoral response was measured by quantifying antibody titers against SARS-CoV-2 spike protein (anti-S).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!