Addition of Benzyl Halides to Aldehydes and Imines Using Photoactivated TDAE: Access to 3,4-Dihydroisocoumarins, 1,2-Diarylethanols, and 1,2-Diarylcarbamates under Metal-Free Conditions.

J Org Chem

Aix Marseille Univ, CNRS, ICR UMR CNRS 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin - CS 30064, Cedex 05, 13385 Marseille, France.

Published: March 2022

We describe herein the intermolecular addition reaction of benzyl halides to aldehydes and imines using photoactivated tetrakis(dimethylamino)ethylene (TDAE) as superphotoreductant. 3,4-Dihydroisocoumarins, 1,2-diarylethanols, and 1,2-diarylcarbamates were obtained with good functional group tolerance using simple, mild, and metal-free conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.2c00074DOI Listing

Publication Analysis

Top Keywords

benzyl halides
8
halides aldehydes
8
aldehydes imines
8
imines photoactivated
8
34-dihydroisocoumarins 12-diarylethanols
8
12-diarylethanols 12-diarylcarbamates
8
metal-free conditions
8
addition benzyl
4
photoactivated tdae
4
tdae access
4

Similar Publications

Rationally designed universal passivator for high-performance single-junction and tandem perovskite solar cells.

Nat Commun

January 2025

State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, China.

Interfacial trap-assisted nonradiative recombination hampers the development of metal halide perovskite solar cells (PSCs). Herein, we report a rationally designed universal passivator to realize highly efficient and stable single junction and tandem PSCs. Multiple defects are simultaneously passivated by the synergistic effect of anion and cation.

View Article and Find Full Text PDF

Ni-Catalyzed Enantioselective Desymmetrization: Development of Divergent Acyl and Decarbonylative Cross-Coupling Reactions.

J Am Chem Soc

January 2025

The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States.

Ni-catalyzed asymmetric reductive cross-coupling reactions provide rapid and modular access to enantioenriched building blocks from simple electrophile precursors. Reductive coupling reactions that can diverge through a common organometallic intermediate to two distinct families of enantioenriched products are particularly versatile but underdeveloped. Here, we describe the development of a bis(oxazoline) ligand that enables the desymmetrization of -anhydrides.

View Article and Find Full Text PDF

We report herein a palladium-catalyzed distal alkylation of silyldienol and silyltrienol ethers of enones through coupling with activated halides to achieve new - and -alkylated motifs. Additionally, by employing propargyl bromides, synthetically useful linear allenes along with functionalized enones have been synthesized. Low-catalyst loading, and late-stage transformations of pharmaceutically relevant molecules further showcase the importance of the present protocol.

View Article and Find Full Text PDF

Photocatalytic Oxidative Coupling of Benzyl Alcohol and Benzylamine for Imine Synthesis Using Immobilized CsBiBr Perovskite.

Small

December 2024

LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, Porto, 4200-465, Portugal.

The oxidative cross-coupling of benzyl alcohol (BA) and benzylamine (BZA) is employed for the production of the corresponding imine, N-benzylidenebenzylamine (BZI), under visible light irradiation (light-emitting diodes (LE with λ = 417 nm) and mild reaction conditions. The cesium bismuth halide perovskites (CsBiBr, CBB) are synthesized by a one-step solution process as a sustainable alternative for the widely used Pb-halide perovskites. The CBB photocatalyst is immobilized on a polyethylene terephthalate (PET) structure designed explicitly for three-dimensional (3D) printing to operate in both batch and continuous modes to overcome the need for a final catalyst separation step.

View Article and Find Full Text PDF

Hydroalkylation of Vinylarenes by Transition-Metal-Free In Situ Generation of Benzylic Nucleophiles Using Tetramethyldisiloxane and Potassium tert-Butoxide.

Angew Chem Int Ed Engl

December 2024

Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada.

Hydrosilanes and Lewis bases are known to promote various reductive defunctionalizations, rearrangements, and silylation reactions, facilitated by enigmatic silicon/Lewis base-derived reactive intermediates. Despite the wide variety of transformations enabled by this reagent combination, no examples of intermolecular C(sp)-C(sp) forming reactions have been reported. In this work, we've identified 1,1,3,3-tetramethyldisiloxane (TMDSO) and KOBu as a unique reagent combination capable of generating benzylic nucleophiles in situ from styrene derivatives, which can subsequently react with alkyl halides to give a new C(sp)-C(sp) linkage via formal hydroalkylation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!