Missense Variants Reveal Functional Insights Into the Human ARID Family of Gene Regulators.

J Mol Biol

Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, United Kingdom. Electronic address:

Published: May 2022

Missense variants are alterations to protein coding sequences that result in amino acid substitutions. They can be deleterious if the amino acid is required for maintaining structure or/and function, but are likely to be tolerated at other sites. Consequently, missense variation within a healthy population can mirror the effects of negative selection on protein structure and function, such that functional sites on proteins are often depleted of missense variants. Advances in high-throughput sequencing have dramatically increased the sample size of available human variation data, allowing for population-wide analysis of selective pressures. In this study, we developed a convenient set of tools, called 1D-to-3D, for visualizing the positions of missense variants on protein sequences and structures. We used these tools to characterize human homologues of the ARID family of gene regulators. ARID family members are implicated in multiple cancer types, developmental disorders, and immunological diseases but current understanding of their mechanistic roles is incomplete. Combined with phylogenetic and structural analyses, our approach allowed us to characterise sites important for protein-protein interactions, histone modification recognition, and DNA binding by the ARID proteins. We find that comparing missense depletion patterns among paralogs can reveal sub-functionalization at the level of domains. We propose that visualizing missense variants and their depletion on structures can serve as a valuable tool for complementing evolutionary and experimental findings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9077328PMC
http://dx.doi.org/10.1016/j.jmb.2022.167529DOI Listing

Publication Analysis

Top Keywords

missense variants
20
arid family
12
family gene
8
gene regulators
8
amino acid
8
missense
7
variants reveal
4
reveal functional
4
functional insights
4
insights human
4

Similar Publications

Objective: The study aimed to evaluate the epidemiological, clinical, and molecular data of mucopolysaccharidosis type II (MPS II) patients and their outcomes using the national registry of patients in the Russian Federation (RF). Materials and Methods: In the retrospective cohort study, the authors included data from the Russian national registry of MPS II. Results: The prevalence of MPS II in RF is 0.

View Article and Find Full Text PDF

To maintain genome stability, proliferating cells must enact a program of telomere maintenance. While most tumors maintain telomeres through the action of telomerase, a subset of tumors utilize a DNA-templated process termed Alternative Lengthening of Telomeres or ALT. ALT is associated with mutations in the ATRX/DAXX/H3.

View Article and Find Full Text PDF

The heart employs a specialized ribosome in its muscle cells to translate genetic information into proteins, a fundamental adaptation with an elusive physiological role. Its significance is underscored by the discovery of neonatal patients suffering from often fatal heart failure caused by rare compound heterozygous variants in RPL3L, a muscle-specific ribosomal protein that replaces the ubiquitous RPL3 in cardiac ribosomes. -linked heart failure represents the only known human disease arising from mutations in tissue-specific ribosomes, yet the underlying pathogenetic mechanisms remain poorly understood despite an increasing number of reported cases.

View Article and Find Full Text PDF

Autosomal dominant CDK13-related disease is characterized by congenital heart defects, dysmorphic facial features, and intellectual developmental disorder (CHDFIDD). Heterozygous pathogenic variants, particularly missense variants in the kinase domain, have previously been described as disease causing. Using the determination of a methylation pattern and comparison with an established episignature, we reveal the first hypomorphic variant in the kinase domain of CDK13, leading to a never before described autosomal recessive form of CHDFIDD in a boy with characteristic features.

View Article and Find Full Text PDF

GWAS of CRP response to statins further supports the role of APOE in Statin Response: a GIST consortium study.

Pharmacol Res

January 2025

Centre of Clinical Pharmacology & Precision Medicine, William Harvey Research Institute, Queen Mary University of London, London, UK; NIHR Barts Biomedical Research Centre, Queen Mary University of London, London, UK. Electronic address:

Article Synopsis
  • Statins are key medications used to prevent cardiovascular disease by not only lowering lipids but also reducing inflammation, measured by C-reactive protein (CRP).
  • Two significant genetic loci linked to how individuals respond to statin treatment in terms of changes in CRP levels were identified: APOE and HNF1A, both of which are associated with various health conditions like coronary artery disease and diabetes.
  • Further analysis suggests that the APOE-E4 variant may influence the effectiveness of statins, hinting at its potential role in personalized healthcare for those with cardiovascular and related conditions.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!