Biochar and compost were accepted as a stable organic amendment to increase soil C stock as well as to decrease greenhouse gas (GHG) emissions in rice paddy soils. However, in most studies, their effect on GHG flux was evaluated only within the cropping boundary without considering industrial processes. To compare the net effect of these organic amendment utilizations on global warming within the whole rice cropping system boundary from industrial process to cropping, fresh, compost, and biochar manures were applied at a rate of 12 Mg ha (dry weight) in a rice paddy, and total GHG fluxes were evaluated. Compared with fresh manure, compost utilization decreased net global warming potential (GWP) which summated GHG fluxes and soil C stock change with CO equivalent by 43% within rice cropping boundary, via a 25% decrease of CH flux and 39% increase of soil C stock. However, 34 Mg CO-eq. of GHGs were additionally emitted during composting to make 12 Mg of compost and then increased the net GWP by 34% within the whole system boundary. In comparison, biochar changed paddy soil into a GHG sink, via 56% decrease of CH flux and 13% increase of soil C stock. However, pyrolysis emitted a total of 0.08 and 19 Mg CO-eq. of GHGs under with and without syngas recycling system, respectively, to make 12 Mg of biochar. As a result, biochar utilization decreased net GWP by approximately 28-70% over fresh manure within the whole system boundary. Rice grain productivity was not discriminated between biochar and compost manures, but compost considerably increased grain yield over fresh manure. Consequently, biochar utilization significantly decreased GHG intensity which indicates net GWP per grain by 33-72% over fresh manure, but compost increased by 22%. In conclusion, biochar could be a sustainable organic amendment to mitigate GHG emission impact in the rice paddy, but compost should be carefully selected.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.154344 | DOI Listing |
Ecol Lett
January 2025
State Key Laboratory of Crop Stress Biology in Arid Areas, Shanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China.
Microbial traits are critical for carbon sequestration and degradation in terrestrial ecosystems. Yet, our understanding of the relationship between carbon metabolic strategies and genomic traits like genome size remains limited. To address this knowledge gap, we conducted a global-scale meta-analysis of 2650 genomes, integrated whole-genome sequencing data, and performed a continental-scale metagenomic field study.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Biotechnology, University of Verona, strada Le Grazie 15, 37134 Verona, Italy. Electronic address:
Understanding the accumulation and stability of soil organic matter (SOM) pools as a function of time (i.e., soil age) and climate (i.
View Article and Find Full Text PDFSci Total Environ
January 2025
Graduate Program in Biodiversity and Nature Conservation, Federal University of Juiz de Fora (UFJF), Minas Gerais State, Brazil; Plant Ecology Laboratory, Department of Botany, Federal University of Juiz de Fora, Juiz de Fora (UFJF), Minas Gerais State, Brazil. Electronic address:
Research about patterns of aboveground carbon stock (AGC) across different tropical forest types is central to climate change mitigation efforts. However, the aboveground carbon stock (AGC) quantification for Brazilian cloud forest ecosystems along the altitudinal gradient is still scarce. We aimed to evaluate the effects of abiotic and biotic on AGC and the AGC distribution between species and families of tree communities along an altitudinal Brazilian Atlantic cloud forest gradient of the Mantiqueira Mountain Range, Southeastern Brazil.
View Article and Find Full Text PDFJ Radiat Res
January 2025
International Agency for Research on Cancer, Environment and Lifestyle Epidemiology Branch, Av. Tony Garnier, Lyon 69007, France.
Between 1949 and 1962 the Soviet Union performed atmospheric tests of nuclear weapons at the Semipalatinsk nuclear test site (SNTS) in Kazakhstan, resulting in widespread contamination of the surrounding region with radioactive fallout. Settlements in the southeast Abai oblast of Kazakhstan, close to the border with China, are not thought to have received significant fallout from the SNTS. There is, however, evidence that the study area, including Makanchi, Urdzhar and Taskesken villages, was contaminated by atmospheric nuclear tests performed by China at the Lop Nor NTS between 1964 and 1980.
View Article and Find Full Text PDFData Brief
February 2025
CREA - Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment, I-40128 Bologna, Italy.
Farming practices such as soil tillage, organic/mineral fertilization, irrigation, crop selection and residues management influence multiple ecosystem services provided by agricultural systems. These practices exhibit complex, non-linear interrelationships that affect crop productivity, water quality, and non-carbon dioxide greenhouse gases (GHG) emissions, possibly offsetting their benefits regarding soil organic carbon (SOC) sequestration. Current methodologies from the Intergovernmental Panel on Climate Change (IPCC) for assessing the impacts of alternative farming practices on GHG emissions rely on global or country-specific coefficients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!