The present study focused on the photocatalytic degradation of 5-Flurouracil (FU), carvedilol (Car), para-chlorophenol (PCP) and methimazole (Met) under visible light irradiation by MnWO/AgWO (MWO/AWO) nanohybrid. Here, MWO/AWO nanohybrid was characterized by XRD, TEM, EDS, XPS, ESR, EIS, BET and DRS. The band gap energy of the MWO/AWO nanohybrid was found to be 2.75 eV, which enables effective photocatalytic activity of nanohybrid under visible light. The photocatalytic degradation of various PhACs such as Fu, Car, PCP and Met was found to be 98.8, 100, 98 and 98.1% respectively. The degradation efficiency of the MWO/AWO nanohybrid on various PhACs was higher than the pure MWO and AWO nanoparticle. The effective formation of OH• and •O by MWO/AWO nanohybrid played an important role in degradation of PhACs and it was determined by radical scavenging experiment. Further, the intermediates formed during the photocatalytic process were analyzed by GC-MS/MS to elucidate the photodegradation pathway and the results reveal the complete mineralization of the PhACs. The toxicity of the degraded product was performed against on Bacillus subtilis and Escherichia coli where it shows that the nanohybrid possesses high relative growth inhibition than AWO and MWO nanoparticles. In addition, the genotoxicity of the nanohybrid against Allium cepa was performed and it exhibited lower toxicity. The synthesized nanohybrid proves to be an excellent photocatalyst with good stability, reusability, eco-friendly, and cost-effective material for implementation in practical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.134130DOI Listing

Publication Analysis

Top Keywords

mwo/awo nanohybrid
20
nanohybrid
9
5-flurouracil carvedilol
8
photocatalytic degradation
8
visible light
8
degradation phacs
8
mwo/awo
5
photodegradation 5-flurouracil
4
carvedilol para-chlorophenol
4
para-chlorophenol methimazole
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!