Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
COVID-19 is a fatal disease caused by the SARS-CoV-2 virus that has caused around 5.3 Million deaths globally as of December 2021. The detection of this disease is a time taking process that have worsen the situation around the globe, and the disease has been identified as a world pandemic by the WHO. Deep learning-based approaches are being widely used to diagnose the COVID-19 cases, but the limitation of immensity in the publicly available dataset causes the problem of model over-fitting. Modern artificial intelligence-based techniques can be used to increase the dataset to avoid from the over-fitting problem. This research work presents the use of various deep learning models along with the state-of-the-art augmentation methods, namely, classical and generative adversarial network- (GAN-) based data augmentation. Furthermore, four existing deep convolutional networks, namely, DenseNet-121, InceptionV3, Xception, and ResNet101 have been used for the detection of the virus in X-ray images after training on augmented dataset. Additionally, we have also proposed a novel convolutional neural network (QuNet) to improve the COVID-19 detection. The comparative analysis of achieved results reflects that both QuNet and Xception achieved high accuracy with classical augmented dataset, whereas QuNet has also outperformed and delivered 90% detection accuracy with GAN-based augmented dataset.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8898107 | PMC |
http://dx.doi.org/10.1155/2022/8925930 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!