The Covid-19 pandemic represents one of the greatest global health emergencies of the last few decades with indelible consequences for all societies throughout the world. The cost in terms of human lives lost is devastating on account of the high contagiousness and mortality rate of the virus. Millions of people have been infected, frequently requiring continuous assistance and monitoring. Smart healthcare technologies and Artificial Intelligence algorithms constitute promising solutions useful not only for the monitoring of patient care but also in order to support the early diagnosis, prevention and evaluation of Covid-19 in a faster and more accurate way. On the other hand, the necessity to realise reliable and precise smart healthcare solutions, able to acquire and process voice signals by means of appropriate Internet of Things devices in real-time, requires the identification of algorithms able to discriminate accurately between pathological and healthy subjects. In this paper, we explore and compare the performance of the main machine learning techniques in terms of their ability to correctly detect Covid-19 disorders through voice analysis. Several studies report, in fact, significant effects of this virus on voice production due to the considerable impairment of the respiratory apparatus. Vocal folds oscillations that are more asynchronous, asymmetrical and restricted are observed during phonation in Covid-19 patients. Voice sounds selected by the Coswara database, an available crowd-sourced database, have been e analysed and processed to evaluate the capacity of the main ML techniques to distinguish between healthy and pathological voices. All the analyses have been evaluated in terms of accuracy, sensitivity, specificity, F1-score and Receiver Operating Characteristic area. These show the reliability of the Support Vector Machine algorithm to detect the Covid-19 infections, achieving an accuracy equal to about 97%.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8864957PMC
http://dx.doi.org/10.1109/ACCESS.2021.3075571DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
8
voice analysis
8
smart healthcare
8
detect covid-19
8
covid-19
6
voice
5
exploring artificial
4
intelligence techniques
4
techniques detect
4
detect presence
4

Similar Publications

In the fields of engineering, science, technology, and medicine, artificial intelligence (AI) has made significant advancements. In particular, the application of AI techniques in medicine, such as machine learning (ML) and deep learning (DL), is rapidly growing and offers great potential for aiding physicians in the early diagnosis of illnesses. Depression, one of the most prevalent and debilitating mental illnesses, is projected to become the leading cause of disability worldwide by 2040.

View Article and Find Full Text PDF

Transformers for Neuroimage Segmentation: Scoping Review.

J Med Internet Res

January 2025

Department of Computer Science and Software Engineering, United Arab Emirates University, Al Ain, United Arab Emirates.

Background: Neuroimaging segmentation is increasingly important for diagnosing and planning treatments for neurological diseases. Manual segmentation is time-consuming, apart from being prone to human error and variability. Transformers are a promising deep learning approach for automated medical image segmentation.

View Article and Find Full Text PDF

Exploring the Credibility of Large Language Models for Mental Health Support: Protocol for a Scoping Review.

JMIR Res Protoc

January 2025

Data and Web Science Group, School of Business Informatics and Mathematics, University of Manneim, Mannheim, Germany.

Background: The rapid evolution of large language models (LLMs), such as Bidirectional Encoder Representations from Transformers (BERT; Google) and GPT (OpenAI), has introduced significant advancements in natural language processing. These models are increasingly integrated into various applications, including mental health support. However, the credibility of LLMs in providing reliable and explainable mental health information and support remains underexplored.

View Article and Find Full Text PDF

Background: Estimating the prevalence of schizophrenia in the general population remains a challenge worldwide, as well as in Japan. Few studies have estimated schizophrenia prevalence in the Japanese population and have often relied on reports from hospitals and self-reported physician diagnoses or typical schizophrenia symptoms. These approaches are likely to underestimate the true prevalence owing to stigma, poor insight, or lack of access to health care among respondents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!