Rnd3/RhoE is an atypical Rho GTPase family member, known to be deregulated in many types of cancer. Previously, we showed that RND3 expression is downregulated in hepatocellular carcinoma (HCC) cell lines and tissues. In cancer cells, Rnd3 is involved in the regulation of cell proliferation and cell invasion. The implication of Rnd3 in HCC invasion was importantly studied whereas its role in cell growth needs further investigation. Thus, in this work, we aimed to better understand the impact of Rnd3 on tumor hepatocyte proliferation. Our results indicate that the silencing of RND3 induces a cell growth arrest both in vitro in 2D and 3D culture conditions and in vivo in tumor xenografts. The growth alteration after RND3 silencing in HCC cells is not due to an increase of cell death but to the induction of senescence. This RND3 knockdown-mediated phenomenon is dependent on the decrease of hTERT expression. Interestingly, after re-expression of RND3, these cells are able to bypass senescence and regain the ability to proliferate, with a re-expression of hTERT. Given that a low expression of Rnd3 is linked to the presence of satellite nodules in HCC, the transient senescence state observed might play a role in cancer progression.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41417-022-00445-6DOI Listing

Publication Analysis

Top Keywords

rnd3
9
hepatocellular carcinoma
8
cell growth
8
cell
6
silencing rnd3/rhoe
4
rnd3/rhoe inhibits
4
growth
4
inhibits growth
4
growth human
4
human hepatocellular
4

Similar Publications

The widespread use of perfluorooctanesulfonic acid (PFOS) has raised concerns regarding its potential on pregnant women, particularly in relation to the development of pre-eclampsia (PE). This study investigates the impact of PFOS exposure on the LncRNA/Rnd3 axis in pregnant mice and its association with trophoblast cell functions in PE. Bioinformatics analysis revealed PFOS-related gene alterations in PE, with pathways enriched in apoptotic signaling and cytokine interactions.

View Article and Find Full Text PDF

Diabetic microvascular dysfunction is evidenced by disrupted endothelial cell junctions and increased microvascular permeability. However, effective strategies against these injuries remain scarce. In this study, the type 2 diabetes mouse model was established by high-fat diet combined with streptozotocin injection in Rnd3 endothelial- specific transgenic and knockout mice.

View Article and Find Full Text PDF

Doxorubicin, a representative drug of the anthracycline class, is widely used in cancer treatment. However, Doxorubicin-induced cardiotoxicity (DIC) presents a significant challenge in its clinical application. Mitochondrial dysfunction plays a central role in DIC, primarily through disrupting mitochondrial dynamics.

View Article and Find Full Text PDF

Mechanistic insights into SIRT7 and EZH2 regulation of cisplatin resistance in bladder cancer cells.

Cell Death Dis

December 2024

Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Urology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.

Cisplatin (CDDP) resistance has been established to significantly impact Bladder Cancer (BCa) therapy. On the other hand, the crucial regulatory involvement of SIRT7 and EZH2 in bladder cancer development is well known. Herein, the collaborative regulatory roles and underlying mechanisms of SIRT7 and EZH2 in CDDP resistance in bladder cancer were explored.

View Article and Find Full Text PDF
Article Synopsis
  • * A new technique called irCLIP-RNP, which combines ultraviolet crosslinking with mass spectrometry, helps identify proteins that associate with RNA and RBPs, revealing intricate protein-RNA relationships.
  • * The study also introduced a method called Re-CLIP to explore simultaneous RBP co-binding on specific RNAs, enhancing our understanding of dynamic RNA-protein interactions within cells.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!