There is a high demand in various fields to develop complex cell cultures. Apart from titer plates, Transwell inserts are the most popular device because they are commercially available, easy to use, and versatile. While Transwell inserts are standardized, there are potential gains to customize inserts in terms of the number of layers, height between the layers and the size and composition of the bioactive membrane. To demonstrate such customization, we present a small library of 3D-printed inserts and a robust method to functionalize the inserts with hydrogel and synthetic membrane materials. The library consists of 24- to 96-well sized inserts as whole plates, strips, and singlets. The density of cultures (the number of wells per plate) and the number of layers was decided by the wall thickness, the capillary forces between the layers and the ability to support fluid operations. The highest density for a two-layer culture was 48-well plate format because the corresponding 96-well format could not support fluidic operations. The bottom apertures were functionalized with hydrogels using a new high-throughput dip-casting technique. This yielded well-defined hydrogel membranes in the apertures with a thickness of about 500 µm and a %CV (coefficient of variance) of < 10%. Consistent intestine barrier was formed on the gelatin over 3-weeks period. Furthermore, mouse intestinal organoid development was compared on hydrogel and synthetic filters glued to the bottom of the 3D-printed inserts. Condensation was most pronounced in inserts with filters followed by the gelatin membrane and the control, which were organoids cultured at the bottom of a titer plate well. This showed that the bottom of an insert should be chosen based on the application. All the inserts were fabricated using an easy-to-use stereolithography (SLA) printer commonly used for dentistry and surgical applications. Therefore, on demand printing of the customized inserts is realistic in many laboratory settings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8901659 | PMC |
http://dx.doi.org/10.1038/s41598-022-07739-7 | DOI Listing |
Regen Ther
March 2025
Laboratory of Veterinary Internal Medicine, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan.
Introduction: Intestinal lymphoma may be latent in some dogs with chronic inflammatory enteropathy. Mesenchymal stromal cells (MSCs) have potential therapeutic applications for refractory chronic inflammatory enteropathy, but their impact on the development of potential intestinal lymphomas has not yet been evaluated. Therefore, this study was performed to investigate the effect of canine adipose-derived MSCs (cADSCs) on the growth of canine lymphoma cell lines to assess the safety of MSC-based therapy in terms of pro- and anti-tumorigenic effects.
View Article and Find Full Text PDFGene
January 2025
College of Medical Technology, Zibo Vocational Institute, Zibo, Shandong Province 255300, China; Center of Translational Medicine, Zibo Central Hospital, Zibo, Shandong Province 255036, China. Electronic address:
Background: P-element-induced wimpy testis (PIWI) proteins bind to PIWI-interactingRNAs (piRNAs) to form the piRNA/PIWI complex, which affects protein regulation. PIWIL4, a member of the PIWI family, has been demonstrated in recent studies to promote the migration of triple-negative breast cancer (TNBC) cell line MDA-MB-231. However, the molecular mechanisms underlying cell migration remain obscure.
View Article and Find Full Text PDFNanotoxicology
January 2025
Department of Pharmaceutical Sciences & Administration, School of Pharmacy, Westbrook College of Health Professions, University of New England, Portland, Maine, USA.
Important cell-based models of intestinal inflammation have been advanced in hopes of predicting the impact of nanoparticles on disease. We sought to determine whether a high level and extended exposure of nanoplastic might result in the added intestinal inflammation caused by nanoplastic reported in a mouse model of irritable bowel disease. The cell models consist of a Transwell©-type insert with a filter membrane upon which lies a biculture monolayer of Caco-2 and HT29-MTX-E12 made up the barrier cells (apical compartment).
View Article and Find Full Text PDFMol Cell Endocrinol
February 2025
Amsterdam Institute for Life and Environment (A-Life), Vrije Universiteit Amsterdam (VU), De Boeleni 1085, 1081, HV Amsterdam, the Netherlands.
Adequate levels of thyroid hormones (THs) in the fetal brain are vital for early neurodevelopment. Most of the TH in fetal brain is derived from circulating thyroxine (T4), which gets locally converted into the biologically active triiodothyronine (T3) by deiodinase enzymes. One of the major routes of TH into the brain is through the blood-cerebrospinal fluid barrier (BCSFB).
View Article and Find Full Text PDFVet Sci
December 2024
Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, Brazil.
Canine oral melanoma (COM) is a promising target for immunomodulatory therapies aimed at enhancing the immune system's antitumor response. Given that adipose-derived mesenchymal stem cells (Ad-MSCs) possess immunomodulatory properties through cytokine release, we hypothesized that co-culturing Ad-MSCs and canine peripheral blood mononuclear cells (PBMCs) could stimulate interleukin (IL) production against melanoma cell lines (MCCLs) and help identify therapeutic targets. This study evaluated IL-2, IL-8, and IL-12 expressions in co-culture with MCCL, Ad-MSCs, and PBMCs and assessed the relationship between gene expression, cell viability, and migration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!