Fluorinated boron nitride nanosheets as an inorganic matrix for the MALDI mass spectrometry analysis of perfluoroalkyl acids.

Talanta

Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250014, PR China. Electronic address:

Published: June 2022

We report, for the first time, the application of fluorinated hexagonal boron nitride nanosheets (F-BNNs) as an effective inorganic matrix for matrix-assisted laser desorption and ionization mass spectrometry (MALDI-MS) analysis of perfluoroalkyl acids (PFAAs). Fluoride modification of F-BNNs increases both enrichment ability and ionization efficiency. The method was validated using environmental water, milk, human serum samples, and zebrafish imaging that has been previously exposed to PFAAs. The method provided in this work holds considerable promise in term of rapid analysis, sample requirement, and practicability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2022.123365DOI Listing

Publication Analysis

Top Keywords

boron nitride
8
nitride nanosheets
8
inorganic matrix
8
mass spectrometry
8
analysis perfluoroalkyl
8
perfluoroalkyl acids
8
fluorinated boron
4
nanosheets inorganic
4
matrix maldi
4
maldi mass
4

Similar Publications

Two-dimensional layered materials (2DLMs) have received increasing attention for their potential in bioelectronics due to their favorable electrical, optical, and mechanical properties. The transformation of the planar structures of 2DLMs into complex 3D shapes is a key strategic step toward creating conformal biointerfaces with cells and applying them as scaffolds to simultaneously guide their growth to tissues and enable integrated bioelectronic monitoring. Using a strain-engineered self-foldable bilayer, we demonstrate the facile formation of predetermined 3D microstructures of 2DLMs with controllable curvatures, called microrolls.

View Article and Find Full Text PDF

Heteropolar two-dimensional materials, including hexagonal boron nitride (hBN), are promising candidates for seawater desalination and osmotic power harvesting, but previous simulation studies have considered bare, unterminated nanopores in molecular dynamics (MD) simulations. There is presently a lack of force fields to describe functionalized nanoporous hBN in aqueous media. To address this gap, we conduct density functional theory (DFT)-based ab initio MD simulations of hBN nanopores surrounded by water molecules.

View Article and Find Full Text PDF

Challenges in Synthesizing Hexagonal Boron Nitride "Quantum" Dots.

Nano Lett

January 2025

School of Physics, Xidian University, No. 2 Taibai South Road, Xi'an 710071, China.

Fluorescent nanodots derived from hexagonal boron nitride (-BN) have garnered significant attention over the past decade. As a result, various synthesis methods─encompassing both bottom-up hydrothermal reactions and top-down exfoliation processes─have been deemed "successful" in producing BN nanodots. Nevertheless, this Perspective emphasizes that substantial challenges remain in the synthesis of "true" nanodots composed mainly of -BN units, as many so-called successful syntheses reported in the literature involve some mischaracterizations.

View Article and Find Full Text PDF

This study investigated silicone composites with distributed boron nitride platelets and carbon microfibers that are oriented electrically. The process involved homogenizing and dispersing nano/microparticles in the liquid polymer, aligning the particles with DC and AC electric fields, and curing the composite with IR radiation to trap particles within chains. This innovative concept utilized two fields to align particles, improving the even distribution of carbon microfibers among BN in the chains.

View Article and Find Full Text PDF
Article Synopsis
  • The paper examines two tool materials for machining Inconel 718, made using different sintering methods: High Pressure-High Temperature (HPHT) and Spark Plasma Sintering (SPS).
  • One material, BNT, is predominantly cubic boron nitride and showed significant changes in phase composition post-sintering; the other, AZW, maintained a similar composition throughout.
  • Both composites demonstrated high mechanical properties, with BNT displaying a higher Young's modulus and hardness than AZW, and both were effective in machining but differed in performance and cost.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!