A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Inhibition of SARS-CoV-2 replication by zinc gluconate in combination with hinokitiol. | LitMetric

Inhibition of SARS-CoV-2 replication by zinc gluconate in combination with hinokitiol.

J Inorg Biochem

MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China. Electronic address:

Published: June 2022

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic is currently the major challenge to global public health. Two proteases, papain-like protease (PLpro) and the 3-chymotrypsin-like protease (3CLpro or Mpro), are indispensable for SARS-CoV-2 replication, making them attractive targets for antiviral therapy development. Here we screened a panel of essential metal ions using a proteolytic assay and identified that zinc gluconate, a widely-used zinc supplement, strongly inhibited the proteolytic activities of the two proteases in vitro. Biochemical and crystallographic data reveal that zinc gluconate exhibited the inhibitory function via binding to the protease catalytic site residues. We further show that treatment of zinc gluconate in combination with a small molecule ionophore hinokitiol, could lead to elevated intracellular Zn level and thereby significantly impaired the two protease activities in cellulo. Particularly, this approach could also be applied to rescue SARS-CoV-2 infected mammalian cells, indicative of potential application to combat coronavirus infections. Our studies provide the direct experimental evidence that elevated intracellular zinc concentration directly inhibits SARS-CoV-2 replication and suggest the potential benefits to use the zinc supplements for coronavirus disease 2019 (COVID-19) treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8886686PMC
http://dx.doi.org/10.1016/j.jinorgbio.2022.111777DOI Listing

Publication Analysis

Top Keywords

zinc gluconate
16
sars-cov-2 replication
12
gluconate combination
8
elevated intracellular
8
zinc
7
inhibition sars-cov-2
4
replication zinc
4
gluconate
4
combination hinokitiol
4
hinokitiol severe
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!