The plasma consists of multiple functional serine zymogens, such as plasma kallikrein-kinin system (KKS), which are vulnerable to exogenous chemical exposure, and may closely relate to the deleterious effects. Testing whether the anthropogenic chemicals could increase the kallikrein-like activity in plasma or not would be of great help to understand their potentials in triggering the cascade activation of the plasma zymogens and explain the corresponding hematotoxicity. In this study, a novel high-throughput ex vivo assay was established to screen the abilities of emerging chemicals like per- and polyfluoroalkyl substances (PFASs) in inducing kallikrein-like activities on basis of using rat plasma as the protease zymogen source. Upon the optimization of the conditions in the test system, the assay gave sensitive fluorescent response to the stimulation of the positive control, dextran sulfate, and the dose-response showed a typical S-shaped curve with EC of 0.24 mg/L. The intra-plate and inter-plate relative standard deviations (RSDs) were less than 10% in the quantitative range of dextran sulfate, indicating a good reliability and repeatability of this newly-established assay. Using this method, several alternatives or congeners of perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), including 6:2 chlorinated polyfluoroalkyl ether sulfonate (6:2 Cl-PFESA), Ag-PFOA, K-PFOA, Na-PFOA and ammonium pentadecafluorooctanoate (APFO), were further screened, and their capabilities in inducing kallikrein-like activities were identified. The ex vivo assay newly-developed in the present study would be promising in high-throughput screening of the hematological effects of emerging chemicals of concern.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2022.113381 | DOI Listing |
Acc Chem Res
January 2025
Helmholtz Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtzstrasse 11, 89081 Ulm, Germany.
ConspectusLithium-ion batteries (LIBs) based on graphite anodes are a widely used state-of-the-art battery technology, but their energy density is approaching theoretical limits, prompting interest in lithium-metal batteries (LMBs) that can achieve higher energy density. In addition, the limited availability of lithium reserves raises supply concerns; therefore, research on postlithium metal batteries is underway. A major issue with these metal anodes, including lithium, is dendritic formation and insufficient reversibility, which leads to safety risks due to short circuits and the use of flammable electrolytes.
View Article and Find Full Text PDFSci Data
January 2025
Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
As the occurrence of human diseases and conditions increase, questions continue to arise about their linkages to chemical exposure, especially for per-and polyfluoroalkyl substances (PFAS). Currently, many chemicals of concern have limited experimental information available for their use in analytical assessments. Here, we aim to increase this knowledge by providing the scientific community with multidimensional characteristics for 175 PFAS and their resulting 281 ion types.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea; Institute of Health & Environment, Seoul National University, Seoul, South Korea. Electronic address:
Structural diversity can affect the degradability of per- and polyfluoroalkyl substances (PFASs) during water treatment. Here, three PFASs with different functional groups-CF-R, PFHpA, PFHxS, and 6:2 FTS-were degraded using vacuum ultraviolet (VUV/UV)-based treatments. While fully fluorinated PFASs-PFHpA and PFHxS-were degraded faster in the VUV/UV/sulfite reaction than in VUV/UV photolysis, VUV/UV photolysis was more effective for degrading 6:2 FTS by OH radicals produced through photolysis of water.
View Article and Find Full Text PDFChemosphere
January 2025
Chemical and Veterinary Analytical Institute Muensterland-Emscher-Lippe, Joseph-König-Str. 40, 48147, Muenster, Germany.
Perfluorocarboxylic acids and perfluorosulfonic acids accumulate in food webs, thus posing a serious threat to food safety. The European Food Safety Authority (EFSA) derived a tolerable weekly intake (TWI) of 4.4 ng/kg body weight for the sum of the four so-called EFSA-PFAS in 2020.
View Article and Find Full Text PDFSci Total Environ
January 2025
US Geological Survey, New England Water Science Center, Northborough, MA, USA.
Groundwater-dependent ecosystems in areas with industrial land use are at risk of exposure to a PFAS chemicals. We investigated one such system with several known PFAS source areas, where high and low permeability sediments (glacial) coupled with groundwater-lake and groundwater/surface-water interactions created complex 'source to seep' dynamics. Using heat-tracing and chemical methods, numerous preferential groundwater discharge zones were identified and sampled across the upper Quashnet River stream-wetland system in Mashpee, MA, USA, downgradient of Joint Base Cape Cod (JBCC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!