A high-throughput assay for screening the abilities of per- and polyfluoroalkyl substances in inducing plasma kallikrein-like activity.

Ecotoxicol Environ Saf

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.

Published: April 2022

The plasma consists of multiple functional serine zymogens, such as plasma kallikrein-kinin system (KKS), which are vulnerable to exogenous chemical exposure, and may closely relate to the deleterious effects. Testing whether the anthropogenic chemicals could increase the kallikrein-like activity in plasma or not would be of great help to understand their potentials in triggering the cascade activation of the plasma zymogens and explain the corresponding hematotoxicity. In this study, a novel high-throughput ex vivo assay was established to screen the abilities of emerging chemicals like per- and polyfluoroalkyl substances (PFASs) in inducing kallikrein-like activities on basis of using rat plasma as the protease zymogen source. Upon the optimization of the conditions in the test system, the assay gave sensitive fluorescent response to the stimulation of the positive control, dextran sulfate, and the dose-response showed a typical S-shaped curve with EC of 0.24 mg/L. The intra-plate and inter-plate relative standard deviations (RSDs) were less than 10% in the quantitative range of dextran sulfate, indicating a good reliability and repeatability of this newly-established assay. Using this method, several alternatives or congeners of perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), including 6:2 chlorinated polyfluoroalkyl ether sulfonate (6:2 Cl-PFESA), Ag-PFOA, K-PFOA, Na-PFOA and ammonium pentadecafluorooctanoate (APFO), were further screened, and their capabilities in inducing kallikrein-like activities were identified. The ex vivo assay newly-developed in the present study would be promising in high-throughput screening of the hematological effects of emerging chemicals of concern.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2022.113381DOI Listing

Publication Analysis

Top Keywords

per- polyfluoroalkyl
8
polyfluoroalkyl substances
8
kallikrein-like activity
8
activity plasma
8
vivo assay
8
emerging chemicals
8
inducing kallikrein-like
8
kallikrein-like activities
8
dextran sulfate
8
plasma
6

Similar Publications

ConspectusLithium-ion batteries (LIBs) based on graphite anodes are a widely used state-of-the-art battery technology, but their energy density is approaching theoretical limits, prompting interest in lithium-metal batteries (LMBs) that can achieve higher energy density. In addition, the limited availability of lithium reserves raises supply concerns; therefore, research on postlithium metal batteries is underway. A major issue with these metal anodes, including lithium, is dendritic formation and insufficient reversibility, which leads to safety risks due to short circuits and the use of flammable electrolytes.

View Article and Find Full Text PDF

As the occurrence of human diseases and conditions increase, questions continue to arise about their linkages to chemical exposure, especially for per-and polyfluoroalkyl substances (PFAS). Currently, many chemicals of concern have limited experimental information available for their use in analytical assessments. Here, we aim to increase this knowledge by providing the scientific community with multidimensional characteristics for 175 PFAS and their resulting 281 ion types.

View Article and Find Full Text PDF

Degradation and defluorination of CF PFASs with different functional groups by VUV/UV-based reduction and oxidation processes.

J Hazard Mater

January 2025

Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea; Institute of Health & Environment, Seoul National University, Seoul, South Korea. Electronic address:

Structural diversity can affect the degradability of per- and polyfluoroalkyl substances (PFASs) during water treatment. Here, three PFASs with different functional groups-CF-R, PFHpA, PFHxS, and 6:2 FTS-were degraded using vacuum ultraviolet (VUV/UV)-based treatments. While fully fluorinated PFASs-PFHpA and PFHxS-were degraded faster in the VUV/UV/sulfite reaction than in VUV/UV photolysis, VUV/UV photolysis was more effective for degrading 6:2 FTS by OH radicals produced through photolysis of water.

View Article and Find Full Text PDF

Perfluorocarboxylic acids and perfluorosulfonic acids accumulate in food webs, thus posing a serious threat to food safety. The European Food Safety Authority (EFSA) derived a tolerable weekly intake (TWI) of 4.4 ng/kg body weight for the sum of the four so-called EFSA-PFAS in 2020.

View Article and Find Full Text PDF

Groundwater-dependent ecosystems in areas with industrial land use are at risk of exposure to a PFAS chemicals. We investigated one such system with several known PFAS source areas, where high and low permeability sediments (glacial) coupled with groundwater-lake and groundwater/surface-water interactions created complex 'source to seep' dynamics. Using heat-tracing and chemical methods, numerous preferential groundwater discharge zones were identified and sampled across the upper Quashnet River stream-wetland system in Mashpee, MA, USA, downgradient of Joint Base Cape Cod (JBCC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!